Solveeit Logo

Question

Question: String A has a length I, radius of cross – section r, density of material \(\rho\) and is under tens...

String A has a length I, radius of cross – section r, density of material ρ\rho and is under tension t. string B has all these quantities double those of string A .if υA\upsilon_{A} and υB\upsilon_{B} are the corresponding fundamental frequencies of the vibrating string, then

A

υA=2υB\upsilon_{A} = 2\upsilon_{B}

B

υA=4υB\upsilon_{A} = 4\upsilon_{B}

C

υB=4υA\upsilon_{B} = 4\upsilon_{A}

D

υA=υB\upsilon_{A} = \upsilon_{B}

Answer

υA=4υB\upsilon_{A} = 4\upsilon_{B}

Explanation

Solution

Fundamental frequency of a string is

υ=12LTπr2ρ=12LrTπ\upsilon = \frac{1}{2L}\sqrt{\frac{T}{\pi r^{2}\rho}} = \frac{1}{2Lr}\sqrt{\frac{T}{\pi}}

Where the symbols have their usual meanings.

υAυB=(LBLA)(rBrA)(TATBρBρA)1/2\therefore\frac{\upsilon_{A}}{\upsilon_{B}} = \left( \frac{L_{B}}{L_{A}} \right)\left( \frac{r_{B}}{r_{A}} \right)\left( \frac{T_{A}}{T_{B}}\frac{\rho_{B}}{\rho_{A}} \right)^{1/2}

Substituting the given values, we get

υAυB=(2LL)(2rr)(T2T2ρρ)1/2=4\frac{\upsilon_{A}}{\upsilon_{B}} = \left( \frac{2L}{L} \right)\left( \frac{2r}{r} \right)\left( \frac{T}{2T}\frac{2\rho}{\rho} \right)^{1/2} = 4

υA=4υB\upsilon_{A} = 4\upsilon_{B}