Solveeit Logo

Question

Question: Steam at 100°C is passed through 1 kg of water at 0°C Contained in a Calorimeter of mass 0.2 kg. Cal...

Steam at 100°C is passed through 1 kg of water at 0°C Contained in a Calorimeter of mass 0.2 kg. Calculate the mass of steam Required to Revise Temperature to 20°c

A

32.86 g

B

45.21 g

C

21.55 g

D

50.00 g

Answer

32.86 g

Explanation

Solution

The problem involves a calorimetry scenario where steam at 100C100^\circ\text{C} is introduced into water and a calorimeter, both initially at 0C0^\circ\text{C}. The goal is to find the mass of steam needed to raise the final temperature to 20C20^\circ\text{C}.

Assumptions:

  • The initial temperature of water and calorimeter is 0C0^\circ\text{C}.
  • The specific heat capacity of water (cwc_w) is 4186J/kgC4186 \, \text{J/kg}^\circ\text{C}.
  • The specific heat capacity of the calorimeter material is assumed to be that of copper, cc=385J/kgCc_c = 385 \, \text{J/kg}^\circ\text{C}.
  • The latent heat of vaporization of steam (LvL_v) is 2.26×106J/kg2.26 \times 10^6 \, \text{J/kg}.
  • The steam, upon condensation, becomes water at 100C100^\circ\text{C}, and then cools down to the final temperature.

Given:

  • Mass of water (mwm_w): 1kg1 \, \text{kg}
  • Initial temperature (TinitialT_{initial}): 0C0 \, ^\circ\text{C}
  • Mass of calorimeter (mcm_c): 0.2kg0.2 \, \text{kg}
  • Temperature of steam (TsteamT_{steam}): 100C100 \, ^\circ\text{C}
  • Final temperature (TfinalT_{final}): 20C20 \, ^\circ\text{C}

Calculations:

  1. Heat gained by water: Qgain,w=mw×cw×(TfinalTinitial)Q_{gain, w} = m_w \times c_w \times (T_{final} - T_{initial}) Qgain,w=1kg×4186J/kgC×(20C0C)Q_{gain, w} = 1 \, \text{kg} \times 4186 \, \text{J/kg}^\circ\text{C} \times (20 \, ^\circ\text{C} - 0 \, ^\circ\text{C}) Qgain,w=1×4186×20=83720JQ_{gain, w} = 1 \times 4186 \times 20 = 83720 \, \text{J}

  2. Heat gained by calorimeter: Qgain,c=mc×cc×(TfinalTinitial)Q_{gain, c} = m_c \times c_c \times (T_{final} - T_{initial}) Qgain,c=0.2kg×385J/kgC×(20C0C)Q_{gain, c} = 0.2 \, \text{kg} \times 385 \, \text{J/kg}^\circ\text{C} \times (20 \, ^\circ\text{C} - 0 \, ^\circ\text{C}) Qgain,c=0.2×385×20=1540JQ_{gain, c} = 0.2 \times 385 \times 20 = 1540 \, \text{J}

  3. Total heat gained: Qgain,total=Qgain,w+Qgain,c=83720J+1540J=85260JQ_{gain, total} = Q_{gain, w} + Q_{gain, c} = 83720 \, \text{J} + 1540 \, \text{J} = 85260 \, \text{J}

  4. Heat lost by steam: Let msm_s be the mass of steam. The steam first condenses at 100C100^\circ\text{C} and then cools down to 20C20^\circ\text{C}.

    • Heat lost during condensation: Qcondense=ms×Lv=ms×(2.26×106J/kg)Q_{condense} = m_s \times L_v = m_s \times (2.26 \times 10^6 \, \text{J/kg})
    • Heat lost during cooling of condensed steam (water) from 100C100^\circ\text{C} to 20C20^\circ\text{C}: Qcool=ms×cw×(100C20C)=ms×4186J/kgC×80CQ_{cool} = m_s \times c_w \times (100^\circ\text{C} - 20^\circ\text{C}) = m_s \times 4186 \, \text{J/kg}^\circ\text{C} \times 80 \, ^\circ\text{C} Qcool=ms×334880J/kgQ_{cool} = m_s \times 334880 \, \text{J/kg}

    Total heat lost by steam: Qlost,s=Qcondense+Qcool=ms×(2.26×106)+ms×334880Q_{lost, s} = Q_{condense} + Q_{cool} = m_s \times (2.26 \times 10^6) + m_s \times 334880 Qlost,s=ms×(2260000+334880)J/kgQ_{lost, s} = m_s \times (2260000 + 334880) \, \text{J/kg} Qlost,s=ms×2594880J/kgQ_{lost, s} = m_s \times 2594880 \, \text{J/kg}

  5. Equating heat lost and gained: Qlost,s=Qgain,totalQ_{lost, s} = Q_{gain, total} ms×2594880J/kg=85260Jm_s \times 2594880 \, \text{J/kg} = 85260 \, \text{J} ms=852602594880kgm_s = \frac{85260}{2594880} \, \text{kg} ms0.032856kgm_s \approx 0.032856 \, \text{kg}

    Converting to grams: ms0.032856×1000g32.86gm_s \approx 0.032856 \times 1000 \, \text{g} \approx 32.86 \, \text{g}

The mass of steam required is approximately 32.86g32.86 \, \text{g}.