Solveeit Logo

Question

Physics Question on specific heat capacity

Steam at 100C100^{\circ} C is passed into 20g20 g of water acquires a temperature of 80C80^{\circ} C, the mass of water presents will be [Take specific heat of water 1calg1c11 cal g ^{-1} c ^{-1} latent heat of steam =540g1=540 g ^{-1} ]

A

24 g

B

31.5 g

C

42.5 g

D

22.5 g

Answer

22.5 g

Explanation

Solution

(d): Here,
Specific heat of water, sw=1calg1C1s_w = 1 cal g^{-1} \circ C^{-1}
Latent heat of steam, Ls=540calg1 L_s =540 cal g^{-1}
Heat lost by m g of steam at 100^{\circ}C to change into
water at 80^{\circ}C is
Q1=mLs+mswΔTwQ_1 \, \, \, \, \, \, \, \, = m L_s + m s_w \Delta T_ w
=m×540+m×1×(10080)\, \, \, \, \, \, \, \, \, \, \, \, \, = m \times 540 + m\times 1\times (100-80)
=540m+20m=560m= \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, 540 m +20 m = 560 m
Heat gained by 20 g of water to change its
temperature from 10^{\circ}C to 80^{\circ}C is
Q2=mwswδTw=20×1×(8010)=1400Q_2 = m_w s_w \delta T_w = 20 \times 1 \times (80 -10) =1400
According to principle of calorimetry
Q1=Q2Q_1= Q_2
560m=1400orm=205g\therefore \, \, \, 560 m = 1400 \, \, \, or \, \, \, m= 205 g
Total mass of water present
=(20+m)g=(20+205)g=22.5g\, \, \, \, \, \, \, \, = (20 + m ) g = (20 +205 ) g = 22.5 g