Solveeit Logo

Question

Question: The compressibility factor for 1 mole of a Vander Waal's gas Boyle temperature is...

The compressibility factor for 1 mole of a Vander Waal's gas Boyle temperature is

A

1+b2v(vb)\frac{b^2}{v(v-b)}

B

1-bv\frac{b}{v}

C

1+bv\frac{b}{v}

D

1-b2v2\frac{b^2}{v^2}

Answer

1+b2v(vb)\frac{b^2}{v(v-b)}

Explanation

Solution

The van der Waals equation for 1 mole of a real gas is given by:

(P+aV2)(Vb)=RT\left(P + \frac{a}{V^2}\right)(V - b) = RT

The compressibility factor, ZZ, is defined as:

Z=PVRTZ = \frac{PV}{RT}

From the van der Waals equation, we can express pressure PP:

P=RTVbaV2P = \frac{RT}{V-b} - \frac{a}{V^2}

Now, substitute this expression for PP into the definition of ZZ:

Z=(RTVbaV2)VRTZ = \frac{\left(\frac{RT}{V-b} - \frac{a}{V^2}\right)V}{RT}

Distribute VV and divide by RTRT:

Z=RTV(Vb)RTaVV2RTZ = \frac{RT \cdot V}{(V-b)RT} - \frac{aV}{V^2 RT}

Z=VVbaVRTZ = \frac{V}{V-b} - \frac{a}{VRT}

The Boyle temperature (TBT_B) is the temperature at which the second virial coefficient of a real gas is zero. For a van der Waals gas, the virial expansion of ZZ is:

Z=1+(baRT)1V+b2V2+Z = 1 + \left(b - \frac{a}{RT}\right)\frac{1}{V} + \frac{b^2}{V^2} + \dots

The second virial coefficient is B=baRTB = b - \frac{a}{RT}. At Boyle temperature, B=0B = 0:

baRTB=0b - \frac{a}{RT_B} = 0

aRTB=b\frac{a}{RT_B} = b

So, RTB=abRT_B = \frac{a}{b}

Now, substitute RT=abRT = \frac{a}{b} (since T=TBT=T_B) into the expression for ZZ:

Z=VVbaV(ab)Z = \frac{V}{V-b} - \frac{a}{V \left(\frac{a}{b}\right)}

Z=VVbbVZ = \frac{V}{V-b} - \frac{b}{V}

To simplify, combine the terms on the right-hand side:

Z=VVb(Vb)V(Vb)Z = \frac{V \cdot V - b(V-b)}{V(V-b)}

Z=V2bV+b2V(Vb)Z = \frac{V^2 - bV + b^2}{V(V-b)}

This can be rewritten by separating the first term:

Z=VVbbVZ = \frac{V}{V-b} - \frac{b}{V}

We can write VVb\frac{V}{V-b} as Vb+bVb=1+bVb\frac{V-b+b}{V-b} = 1 + \frac{b}{V-b}.

So,

Z=1+bVbbVZ = 1 + \frac{b}{V-b} - \frac{b}{V}

Now combine the last two terms:

Z=1+(bVbbV)Z = 1 + \left(\frac{b}{V-b} - \frac{b}{V}\right)

Z=1+(bVb(Vb)V(Vb))Z = 1 + \left(\frac{bV - b(V-b)}{V(V-b)}\right)

Z=1+(bVbV+b2V(Vb))Z = 1 + \left(\frac{bV - bV + b^2}{V(V-b)}\right)

Z=1+b2V(Vb)Z = 1 + \frac{b^2}{V(V-b)}

Comparing this with the given options, option (A) matches our result.