Solveeit Logo

Question

Question: Statement – I: The value of the integral \(\int_{\pi /6}^{\pi /3} {\dfrac{{{\text{dx}}}}{{1 + \sqrt ...

Statement – I: The value of the integral π/6π/3dx1+tan x\int_{\pi /6}^{\pi /3} {\dfrac{{{\text{dx}}}}{{1 + \sqrt {{\text{tan x}}} }}} is equal toπ6\dfrac{\pi }{6}.
Statement – II: abf(x)dx=abf(a + b - x)dx\int_{\text{a}}^{\text{b}} {{\text{f}}\left( {\text{x}} \right){\text{dx}}} = \int_{\text{a}}^{\text{b}} {{\text{f}}\left( {{\text{a + b - x}}} \right){\text{dx}}}
A. Statement - I is true, Statement - II is true; Statement - II is not a correct explanation for Statement - I B. Statement - I is true, Statement - II is false C. Statement - I is false, Statement - II is true D. Statement - I is true, Statement - II is true; Statement - II is a correct explanation for Statement - I  {\text{A}}{\text{. Statement - I is true, Statement - II is true; Statement - II is not a correct explanation for Statement - I}} \\\ {\text{B}}{\text{. Statement - I is true, Statement - II is false}} \\\ {\text{C}}{\text{. Statement - I is false, Statement - II is true}} \\\ {\text{D}}{\text{. Statement - I is true, Statement - II is true; Statement - II is a correct explanation for Statement - I}} \\\

Explanation

Solution

In order to determine the correct answer we compute statements I and II first and then verify which of the options holds true. We solve the given statements using the formula of property of definite integrals, which saysabf(x)dx=abf(a + b - x)dx\int_{\text{a}}^{\text{b}} {{\text{f}}\left( {\text{x}} \right){\text{dx}}} = \int_{\text{a}}^{\text{b}} {{\text{f}}\left( {{\text{a + b - x}}} \right){\text{dx}}} . We refer to the concept of definite integrals to solve and verify the both statements.

Complete step-by-step solution:
Given data,
π/6π/3dx1+tan x\int_{\pi /6}^{\pi /3} {\dfrac{{{\text{dx}}}}{{1 + \sqrt {{\text{tan x}}} }}}
abf(x)dx=abf(a + b - x)dx\int_{\text{a}}^{\text{b}} {{\text{f}}\left( {\text{x}} \right){\text{dx}}} = \int_{\text{a}}^{\text{b}} {{\text{f}}\left( {{\text{a + b - x}}} \right){\text{dx}}}
Let us consider the integral function given in statement I to be ‘X’
X = π/6π/3dx1+tan x - - - - (1)\Rightarrow {\text{X = }}\int_{\pi /6}^{\pi /3} {\dfrac{{{\text{dx}}}}{{1 + \sqrt {{\text{tan x}}} }}} {\text{ - - - - }}\left( 1 \right)
Now according to the property of definite integrals we know that an integral function of the form abf(x)dx\int_{\text{a}}^{\text{b}} {{\text{f}}\left( {\text{x}} \right){\text{dx}}} can be expressed asabf(a + b - x)dx\int_{\text{a}}^{\text{b}} {{\text{f}}\left( {{\text{a + b - x}}} \right){\text{dx}}} .
I.e., abf(x)dx=abf(a + b - x)dx\int_{\text{a}}^{\text{b}} {{\text{f}}\left( {\text{x}} \right){\text{dx}}} = \int_{\text{a}}^{\text{b}} {{\text{f}}\left( {{\text{a + b - x}}} \right){\text{dx}}}
This is Statement II itself, hence Statement – II is true.
Let us apply this property on equation – (1), we get
X = π/6π/3dx1+tan (π2x) X = π/6π/3dx1+cot x X = π/6π/3tan x1+tan xdx - - - (2) \Rightarrow {\text{X = }}\int_{\pi /6}^{\pi /3} {\dfrac{{{\text{dx}}}}{{1 + \sqrt {{\text{tan }}\left( {\dfrac{\pi }{2} - {\text{x}}} \right)} }}} \\\ \Rightarrow {\text{X = }}\int_{\pi /6}^{\pi /3} {\dfrac{{{\text{dx}}}}{{1 + \sqrt {{\text{cot x}}} }}} \\\ \Rightarrow {\text{X = }}\int_{\pi /6}^{\pi /3} {\dfrac{{\sqrt {{\text{tan x}}} }}{{1 + \sqrt {{\text{tan x}}} }}{\text{dx}}} {\text{ - - - }}\left( 2 \right) \\\
Adding equations (1) and (2) we get
2X = π/6π/3[tan x1+tan x+11+tan x]dx 2X = π/6π/3dx 2X = [x]π/6π/3 2X = π6 X = π12 \Rightarrow 2{\text{X = }}\int_{\pi /6}^{\pi /3} {\left[ {\dfrac{{\sqrt {{\text{tan x}}} }}{{1 + \sqrt {{\text{tan x}}} }} + \dfrac{1}{{1 + \sqrt {{\text{tan x}}} }}} \right]{\text{dx}}} \\\ \Rightarrow 2{\text{X = }}\int_{\pi /6}^{\pi /3} {{\text{dx}}} \\\ \Rightarrow 2{\text{X = }}\left[ {\text{x}} \right]_{\pi /6}^{\pi /3} \\\ \Rightarrow 2{\text{X = }}\dfrac{\pi }{6} \\\ \Rightarrow {\text{X = }}\dfrac{\pi }{{12}} \\\
Hence we get π/6π/3dx1+tan x=π12\int_{\pi /6}^{\pi /3} {\dfrac{{{\text{dx}}}}{{1 + \sqrt {{\text{tan x}}} }}} = \dfrac{\pi }{{12}}
Therefore the statement is false.
Hence we get Statement – I is false, Statement – II is true.
Option C is the correct answer.

Note: In order to solve this type of question the key is to know the concepts of integration and definite integrals. Once we identify the statement – II is an identity, it is true. Then we use the same to compute the answer of integral in statement I without even simplifying the integral. General knowledge of how to perform integration and substitute limits later is required to perform integration problems.