Solveeit Logo

Question

Question: Statement I: The equation \({\left( {{{\sin }^{ - 1}}x} \right)^3} + {\left( {{{\cos }^{ - 1}}x} \ri...

Statement I: The equation (sin1x)3+(cos1x)3aπ3=0{\left( {{{\sin }^{ - 1}}x} \right)^3} + {\left( {{{\cos }^{ - 1}}x} \right)^3} - a{\pi ^3} = 0 has a solution for all a132a \geqslant \dfrac{1}{{32}}.
Statement II: For any xR, sin1x+cos1x=π2x \in \mathbb{R},{\text{ }}{\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \dfrac{\pi }{2} and 0(sin1xπ2)29π216.0 \leqslant {\left( {{{\sin }^{ - 1}}x - \dfrac{\pi }{2}} \right)^2} \leqslant \dfrac{{9{\pi ^2}}}{{16}}.
A) Both statements I and II are true.
B) Both statements I and II are true but I is not a correct explanation of II
C) Statement I is true and statement II is false
D) Statement I is false and statement II is true

Explanation

Solution

Reduce the given equation using the inverse trigonometric identity.
Roots (or solution) of an equation of variable xx, is the value of xx which satisfies the equation.
The nature of the roots of a quadratic equation is determined by the value of the discriminant, denoted by D.
The discriminant of the quadratic equation ax2+bx+ca{x^2} + bx + c would be b24ac{b^2} - 4ac here, a,b and c are coefficients of the equation.
D=b24acD = {b^2} - 4ac (a, b and c are coefficients of the quadratic equation)
If D<0D < 0, Equation would have complex roots (real part+ imaginary part)
If D>0D > 0, Equation would have two distinct real roots
If D=0D = 0, Equation would have two real and equal roots.
We consider the existence of a solution when the solution is real.
The domain of the function f(x)f\left( x \right) , is a set of all values of x for which the function is valid. The range is the set of all output values of the function.

Complete step-by-step answer:
Step 1: Analysing statement I
Given equation: (sin1x)3+(cos1x)3aπ3=0{\left( {{{\sin }^{ - 1}}x} \right)^3} + {\left( {{{\cos }^{ - 1}}x} \right)^3} - a{\pi ^3} = 0
Take sin1x=t{\sin ^{ - 1}}x = t
Using inverse trigonometric identity:
sin1x+cos1x=π2{\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \dfrac{\pi }{2}
cos1x=π2sin1x\because {\cos ^{ - 1}}x = \dfrac{\pi }{2} - {\sin ^{ - 1}}x
Therefore, in terms of ‘t’, cos1x=π2t{\cos ^{ - 1}}x = \dfrac{\pi }{2} - t
Substituting in the given equation.
(t)3+(π2t)3aπ3=0{\left( t \right)^3} + {\left( {\dfrac{\pi }{2} - t} \right)^3} - a{\pi ^3} = 0 …… (1)
Expand (π2t)3{\left( {\dfrac{\pi }{2} - t} \right)^3} using identity (ab)3{\left( {a - b} \right)^3}
i.e. (ab)3=a3b33a2b+3ab2{\left( {a - b} \right)^3} = {a^3} - {b^3} - 3{a^2}b + 3a{b^2}
on comparing, a=π2,b=ta = \dfrac{\pi }{2},b = t
(π2t)3=(π2)3t33(π2)2t+3×π2t2 π83t33π42t+3π2t2  {\left( {\dfrac{\pi }{2} - t} \right)^3} = {\left( {\dfrac{\pi }{2}} \right)^3} - {t^3} - 3{\left( {\dfrac{\pi }{2}} \right)^2}t + 3 \times \dfrac{\pi }{2}{t^2} \\\ \Rightarrow {\dfrac{\pi }{8}^3} - {t^3} - {\dfrac{{3\pi }}{4}^2}t + \dfrac{{3\pi }}{2}{t^2} \\\
On substituting in equation (1)
t3+π83t33π42t+3π2t2aπ3=0 3π2t23π42t+π83aπ3=0  {t^3} + {\dfrac{\pi }{8}^3} - {t^3} - {\dfrac{{3\pi }}{4}^2}t + \dfrac{{3\pi }}{2}{t^2} - a{\pi ^3} = 0 \\\ \Rightarrow \dfrac{{3\pi }}{2}{t^2} - {\dfrac{{3\pi }}{4}^2}t + {\dfrac{\pi }{8}^3} - a{\pi ^3} = 0 \\\
Taking π\pi as common and multiplying both sides by 2.
3t23π2t+π422aπ2=0\Rightarrow 3{t^2} - \dfrac{{3\pi }}{2}t + {\dfrac{\pi }{4}^2} - 2a{\pi ^2} = 0 …… (2)
Equation (2) is a quadratic equation in variable ‘t’
On comparing with the standard quadratic equation: ax2+bx+c=0a{x^2} + bx + c = 0
a=3, b=3π2, c=π422aπ2a = 3,{\text{ }}b = - \dfrac{{3\pi }}{2},{\text{ }}c = {\dfrac{\pi }{4}^2} - 2a{\pi ^2}
We know, the solution of a quadratic equation exists for D0D \geqslant 0
D=b24acD = {b^2} - 4ac
Here, D is discriminant
Therefore, (3π2)24×3(π422aπ2)0{\left( { - \dfrac{{3\pi }}{2}} \right)^2} - 4 \times 3\left( {{{\dfrac{\pi }{4}}^2} - 2a{\pi ^2}} \right) \geqslant 0
9π243π2+24aπ20 9π212π24+24aπ20 3π24+24aπ20 24aπ23π24 24a34 a34×24 a132  \Rightarrow \dfrac{{9{\pi ^2}}}{4} - 3{\pi ^2} + 24a{\pi ^2} \geqslant 0 \\\ \Rightarrow \dfrac{{9{\pi ^2} - 12{\pi ^2}}}{4} + 24a{\pi ^2} \geqslant 0 \\\ \Rightarrow \dfrac{{ - 3{\pi ^2}}}{4} + 24a{\pi ^2} \geqslant 0 \\\ \Rightarrow 24a{\pi ^2} \geqslant \dfrac{{3{\pi ^2}}}{4} \\\ \Rightarrow 24a \geqslant \dfrac{3}{4} \\\ \Rightarrow a \geqslant \dfrac{3}{{4 \times 24}} \\\ \Rightarrow a \geqslant \dfrac{1}{{32}} \\\
Thus, the solution of the given equation exists when a132a \geqslant \dfrac{1}{{32}}.
Step 2: Analysing statement II
The inverse trigonometric identity:
sin1x+cos1x=π2{\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \dfrac{\pi }{2} is valid for x[1,1]x \in \left[ { - 1,1} \right]
Graph of y=sin1xy = {\sin ^{ - 1}}x

Domain: [1,1]\left[ { - 1,1} \right]
Range: [π2,π2]\left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]
π2sin1xπ2\Rightarrow - \dfrac{\pi }{2} \leqslant {\sin ^{ - 1}}x \leqslant \dfrac{\pi }{2}
Subtracting π4\dfrac{\pi }{4} to both sides of the inequality.
π2π4(sin1xπ4)π2π4 3π4(sin1xπ4)π4  \Rightarrow - \dfrac{\pi }{2} - \dfrac{\pi }{4} \leqslant \left( {{{\sin }^{ - 1}}x - \dfrac{\pi }{4}} \right) \leqslant \dfrac{\pi }{2} - \dfrac{\pi }{4} \\\ \Rightarrow - \dfrac{{3\pi }}{4} \leqslant \left( {{{\sin }^{ - 1}}x - \dfrac{\pi }{4}} \right) \leqslant \dfrac{\pi }{4} \\\
On squaring both sides of the inequality, we get
0(sin1xπ4)29π2160 \leqslant {\left( {{{\sin }^{ - 1}}x - \dfrac{\pi }{4}} \right)^2} \leqslant \dfrac{{9{\pi ^2}}}{{16}}
In the given statement II, the interval for x is, xRx \in \mathbb{R} ; but the above equations and expressions are true (or valid) for only x[1,1]x \in \left[ { - 1,1} \right].

On analysis, the statement I comes out to be true but statement II is false. Thus, the correct option is (C).

Note: Following graph will be useful in future reference.
The graph of y=cos1xy = {\cos ^{ - 1}}x :
Domain: [1,1]\left[ { - 1,1} \right]
Range: [0,π]\left[ {0,\pi } \right]

Students might go wrong while squaring the inequality 3π4(sin1xπ4)π4 - \dfrac{{3\pi }}{4} \leqslant \left( {{{\sin }^{ - 1}}x - \dfrac{\pi }{4}} \right) \leqslant \dfrac{\pi }{4}.
They might write 9π216(sin1xπ4)2π216\dfrac{{9{\pi ^2}}}{{16}} \leqslant {\left( {{{\sin }^{ - 1}}x - \dfrac{\pi }{4}} \right)^2} \leqslant \dfrac{{{\pi ^2}}}{{16}} , this is wrong for the following reasons.
The square of a real number is always greater and equal to zero. This implies 0(sin1xπ4)20 \leqslant {\left( {{{\sin }^{ - 1}}x - \dfrac{\pi }{4}} \right)^2}.
The square of numbers from 3π4 to 0\dfrac{{ - 3\pi }}{4}{\text{ to 0}} lies between 0 to 9π2160{\text{ to }}\dfrac{{9{\pi ^2}}}{{16}}; and the square of numbers from 0 to π40{\text{ to }}\dfrac{\pi }{4} lies between 0 to π2160{\text{ to }}\dfrac{{{\pi ^2}}}{{16}}; thus, the square of numbers from 3π4 to π4\dfrac{{ - 3\pi }}{4}{\text{ to }}\dfrac{\pi }{4} lies between 0 to 9π2160{\text{ to }}\dfrac{{9{\pi ^2}}}{{16}}. Therefore the correct inequality is: 0(sin1xπ4)29π2160 \leqslant {\left( {{{\sin }^{ - 1}}x - \dfrac{\pi }{4}} \right)^2} \leqslant \dfrac{{9{\pi ^2}}}{{16}} .