Solveeit Logo

Question

Question: Statement-1: Orthocentre of \(\Delta \) where vertices are \(\left( 8,2 \right),\left( 2,2 \right)\A...

Statement-1: Orthocentre of Δ\Delta where vertices are (8,2),(2,2)&(8,6) is (2,2).\left( 8,2 \right),\left( 2,2 \right)\And \left( 8,6 \right)\text{ is }\left( 2,-2 \right).
Statement-2: If Δ\Delta is right-angled Δ\Delta , then the orthocentre of Δ\Delta is the vertex having angle 9090{}^\circ .
A) Statement 11 is true, statement 22 is true; statement 22 is the correct explanation for statement 11.
B) Statement 11 is true, statement 22 is true; statement 22 is not the correct explanation for statement 11 .
C) Statement 11 is true, statement 22 is false.
D) Statement 11 is false, statement 22 is true.

Explanation

Solution

Hint: Centroid is the point of intersection of medians of a triangle.
Orthocentre is the point of intersection of altitudes of a triangle.
Circumcentre is the point of intersection of the perpendicular bisectors of the sides of a triangle.

Complete step-by-step answer:
Statement11:
Let the vertices of the triangle be P(8,2),Q(2,2)P\left( 8,2 \right),Q\left( 2,2 \right) and R(8,6)R\left( 8,6 \right).

Now, we know the slope of the line joining (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) and (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right) is given as m=y2y1x2x1m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}} .
So, the slope of PQ=mPQ=2228=0PQ={{m}_{PQ}}=\dfrac{2-2}{2-8}=0 .
The slope of PR=mPR=2688=PR={{m}_{PR}}=\dfrac{2-6}{8-8}=\infty .
Now, PQ&PRPQ\And PR are perpendicular to each other. Hence, the triangle is right-angled . Now, we know in a right-angled triangle, the circumcentre is the midpoint of the hypotenuse .
Now, we will find the circumcentre, i.e. the midpoint of the hypotenuse.
We know, the midpoint of the line joining two points (a1,b1)\left( {{a}_{1}},{{b}_{1}} \right) and (a2b2)\left( {{a}_{2}}{{b}_{2}} \right) is given as
(a1+a22,b1+b22)\left( \dfrac{{{a}_{1}}+{{a}_{2}}}{2},\dfrac{{{b}_{1}}+{{b}_{2}}}{2} \right)
So, the midpoint of hypotenuse QRQR is (2+82,2+62)\left( \dfrac{2+8}{2},\dfrac{2+6}{2} \right) .
=C(5,4)=C\left( 5,4 \right)
Hence, the circumcentre of ΔPQR\Delta PQR is C(5,4)C\left( 5,4 \right) .
Now, we will find the centroid of ΔPQR\Delta PQR .
We know the centroid of Δ\Delta with vertices (x1,y1),(x2y2)\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}}{{y}_{2}} \right) and (x3y3)\left( {{x}_{3}}{{y}_{3}} \right) is given by:
G(x1+x2+x33,y1+y2+y33)G\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3},\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right).
Hence, the centroid of ΔPQR\Delta PQR is given by:
G(8+2+83,2+2+63)G\left( \dfrac{8+2+8}{3},\dfrac{2+2+6}{3} \right)
=G(6,103)=G\left( 6,\dfrac{10}{3} \right)
Now, let the orthocentre of the triangle be O(h,k)O\left( h,k \right) . We know, the centroid of a triangle divides the line joining orthocentre and circumcentre is the ratio 2:12:1 .
Now, we know, if a point (x,y)\left( x,y \right) divides the line joining (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) and (x2,y2)\left( {{x}_{2}},{{y}_{2}} \right) in the ratio m:nm : n, then
(x,y)=(mx2+nx1m+n,my2+ny1m+n)\left( x,y \right)=\left( \dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n},\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n} \right).
So, (6,103)=((1×h)+(2×5)3,1×k+(2×4)3)\left( 6,\dfrac{10}{3} \right)=\left( \dfrac{\left( 1\times h \right)+\left( 2\times 5 \right)}{3},\dfrac{1\times k+\left( 2\times 4 \right)}{3} \right) .
Now, 6=h+103h=86=\dfrac{h+10}{3}\Rightarrow h=8
And 103=k+83k=2\dfrac{10}{3}=\dfrac{k+8}{3}\Rightarrow k=2
So, the coordinates of orthocentre are (8,2)\left( 8,2 \right) .
Statement 22 :
In a right-angled triangle, two sides are perpendicular to each other. Hence, they will be the altitudes and the meet at the vertex with 9090{}^\circ angle.
Hence, the vertex with 9090{}^\circ angle will be the orthocentre.
Hence, the correct option is option (d).

Note: The midpoint of the line joining the points(x1,y1) and (x2,y2)\left( {{x}_{1}},{{y}_{1}} \right)\text{ and }\left( {{x}_{2}},{{y}_{2}} \right) is given as:
((x1+x2)2,(y1+y2)2)\left( \dfrac{\left( {{x}_{1}}+{{x}_{2}} \right)}{2},\dfrac{\left( {{y}_{1}}+{{y}_{2}} \right)}{2} \right) and not ((x1x2)2,(y1y2)2)\left( \dfrac{\left( {{x}_{1}}-{{x}_{2}} \right)}{2},\dfrac{\left( {{y}_{1}}-{{y}_{2}} \right)}{2} \right) . Students often get confused between the two. Due to this confusion, they generally end up getting a wrong answer. So, such mistakes should be avoided.