Solveeit Logo

Question

Question: Statement-1: If the middle point of the sides of a triangle ABC are ( 0,0), ( 1,2), ( -3,4) then cen...

Statement-1: If the middle point of the sides of a triangle ABC are ( 0,0), ( 1,2), ( -3,4) then centroid of ΔABC\Delta ABC is (23,2)\left( \dfrac{-2}{3},2 \right).
Statement-2: Centroid of a triangle ABC and centroid of the triangle formed by joining the mid points of sides of triangle ABC be always the same .
A) Statement 1-1 is True. Statement 2-2 True: Statement 2-2 is a correct explanation for statement1-1.
B) Statement 1-1 is True. Statement 2-2 True: Statement 2-2 is not correct explanation for statement 1-1
C) Statement 1-1 is True. Statement 2-2 False
D) Statement 1-1 is False. Statement 2-2 True

Explanation

Solution

Hint: The coordinates of centroid of a triangle with vertices (x1,y1),(x2,y2),(x3,y3)\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right),\left( {{x}_{3}},{{y}_{3}} \right) is given as (x1+x2+x33,y1+y2+y33)\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3},\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right) .

Statement-1: The given triangle is ΔABC\Delta ABC. We will consider the vertices of ΔABC\Delta ABC to be given as A(x1,y1),B(x2,y2) andC(x3,y3)A\left( {{x}_{1}},{{y}_{1}} \right),B\left( {{x}_{2}},{{y}_{2}} \right)\ and C\left( {{x}_{3}},{{y}_{3}} \right).

Now , from the diagram , we can see that P,Q,RP,Q,R are the midpoints of sides AB,ACAB,AC and BCBC respectively .
Now , we know that the midpoint of line joining (a1,b1) and(a2,b2)\left( {{a}_{1}},{{b}_{1}} \right)\ and \left( {{a}_{2}},{{b}_{2}} \right) is given as
(a1+a22,b1+b22)\left( \dfrac{{{a}_{1}}+{{a}_{2}}}{2},\dfrac{{{b}_{1}}+{{b}_{2}}}{2} \right)
So , midpoint of ABAB i.e., PP is given as
(x1+x22,y1+y22)\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)
But , in the question , it is given that coordinates of PP are (0,0)\left( 0,0 \right).
So , x1+x22=0x1+x2=0.........(i)\dfrac{{{x}_{1}}+{{x}_{2}}}{2}=0\Rightarrow {{x}_{1}}+{{x}_{2}}=0.........\left( i \right)
And y1+y22=0y1+y2=0.........(ii)\dfrac{{{y}_{1}}+{{y}_{2}}}{2}=0\Rightarrow {{y}_{1}}+{{y}_{2}}=0.........\left( ii \right)
Again , midpoint of ACAC is QQ. So , the coordinates of QQ are given as
(x1+x32,y1+y32)\left( \dfrac{{{x}_{1}}+{{x}_{3}}}{2},\dfrac{{{y}_{1}}+{{y}_{3}}}{2} \right)
But in the question, coordinates of QQ are given as (1,2)\left( 1,2 \right).
So , x1+x32=1x1+x3=2......(iii)  \begin{aligned} & \dfrac{{{x}_{1}}+{{x}_{3}}}{2}=1\Rightarrow {{x}_{1}}+{{x}_{3}}=2......\left( iii \right) \\\ & \\\ \end{aligned}
And y1+y22=2y1+y3=4........(iv)\dfrac{{{y}_{1}}+{{y}_{2}}}{2}=2\Rightarrow {{y}_{1}}+{{y}_{3}}=4........\left( iv \right)
Again , midpoint of BCBC is RR. So , the coordinates of RR are given as
(x2+x32,y2+y32)\left( \dfrac{{{x}_{2}}+{{x}_{3}}}{2},\dfrac{{{y}_{2}}+{{y}_{3}}}{2} \right)
But in the question, coordinates of RR are given as (3,4)\left( -3,4 \right).
So, x2+x32=3x2+x3=6..........(v)\dfrac{{{x}_{2}}+{{x}_{3}}}{2}=-3\Rightarrow {{x}_{2}}+{{x}_{3}}=-6..........\left( v \right)
And y2+y32=4y2+y3=8..........(vi)\dfrac{{{y}_{2}}+{{y}_{3}}}{2}=4\Rightarrow {{y}_{2}}+{{y}_{3}}=8..........\left( vi \right)
Now , we will add the equations (i),(iii)\left( i \right),\left( iii \right) and (v)\left( v \right).
On adding equations (i),(iii)\left( i \right),\left( iii \right) and (v)\left( v \right) , we get
x1+x2+x1+x3+x2+x3=0+2+(6) 2(x1+x2+x3)=4 (x1+x2+x3)=2...........(vii) \begin{aligned} & {{x}_{1}}+{{x}_{2}}+{{x}_{1}}+{{x}_{3}}+{{x}_{2}}+{{x}_{3}}=0+2+\left( -6 \right) \\\ & \Rightarrow 2\left( {{x}_{1}}+{{x}_{2}}+{{x}_{3}} \right)=-4 \\\ & \Rightarrow \left( {{x}_{1}}+{{x}_{2}}+{{x}_{3}} \right)=-2...........\left( vii \right) \\\ \end{aligned}
Now , we will add the equations (ii),(iv)\left( ii \right),\left( iv \right)and (vi)\left( vi \right).
On adding equations (ii),(iv)\left( ii \right),\left( iv \right)and (vi)\left( vi \right), we get
y1+y2+y1+y3+y2+y3=0+4+8 2(y1+y2+y3)=12 (y1+y2+y3)=6...................(viii) \begin{aligned} & {{y}_{1}}+{{y}_{2}}+{{y}_{1}}+{{y}_{3}}+{{y}_{2}}+{{y}_{3}}=0+4+8 \\\ & \Rightarrow 2\left( {{y}_{1}}+{{y}_{2}}+{{y}_{3}} \right)=12 \\\ & \Rightarrow \left( {{y}_{1}}+{{y}_{2}}+{{y}_{3}} \right)=6...................\left( viii \right) \\\ \end{aligned}
Now , we know the coordinates of centroid of a triangle with vertices (x1,y1),(x2,y2),(x3,y3)\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right),\left( {{x}_{3}},{{y}_{3}} \right) is given as (x1+x2+x33,y1+y2+y33)\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3},\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right) .
So , the coordinates of centroid of ΔABC\Delta ABCis
G(x1+x2+x33,y1+y2+y33)G\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3},\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right)
But , from equations (vii)\left( vii \right)and (viii)\left( viii \right), we have
x1+x2+x3=2{{x}_{1}}+{{x}_{2}}+{{x}_{3}}=-2 and y1+y2+y3=6 {{\text{y}}_{1}}+{{y}_{2}}+{{y}_{3}}=6\text{ }
So , coordinates of the centroid of ΔABC\Delta ABCare G(23,2)G\left( \dfrac{-2}{3},2 \right) .
Hence , the statement (1)\left( 1 \right) is true.
Statement 22: Let the vertices of triangle be A(x1,y1),B(x2,y2)&C(x3,y3)A\left( {{x}_{1}},{{y}_{1}} \right),B\left( {{x}_{2}},{{y}_{2}} \right)\And C\left( {{x}_{3}},{{y}_{3}} \right)
So the midpoint of ABAB is D(x1+x22,y1+y22)D\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right) , BC\text{BC} is E(x2+x32,y2+y32)\text{E}\left( \dfrac{{{x}_{2}}+{{x}_{3}}}{2},\dfrac{{{y}_{2}}+{{y}_{3}}}{2} \right) and ACAC is F(x1+x32,y1+y32)\text{F}\left( \dfrac{{{x}_{1}}+{{x}_{3}}}{2},\dfrac{{{y}_{1}}+{{y}_{3}}}{2} \right).

Now , we will find the centroid of ΔABC\Delta ABC.
We know the coordinates of centroid of a triangle with vertices (x1,y1),(x2,y2),(x3,y3)\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right),\left( {{x}_{3}},{{y}_{3}} \right) is given as (x1+x2+x33,y1+y2+y33)\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3},\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right).
So , the centroid of ΔABC\Delta ABC is (x1+x2+x33,y1+y2+y33)\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3},\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right) .
Now , we will find the centroid of ΔDEF\Delta DEF.
The centroid of ΔDEF\Delta DEF is given as (x1+x22+x2+x32+x3+x123,y1+y22+y3+y22+y1+y323)\left( \dfrac{\dfrac{{{x}_{1}}+{{x}_{2}}}{2}+\dfrac{{{x}_{2}}+{{x}_{3}}}{2}+\dfrac{{{x}_{3}}+{{x}_{1}}}{2}}{3},\dfrac{\dfrac{{{y}_{1}}+{{y}_{2}}}{2}+\dfrac{{{y}_{3}}+{{y}_{2}}}{2}+\dfrac{{{y}_{1}}+{{y}_{3}}}{2}}{3} \right)
=(2(x1+x2+x3)23,2(y1+y2+y3)23)=\left( \dfrac{\dfrac{2\left( {{x}_{1}}+{{x}_{2}}+{{x}_{3}} \right)}{2}}{3},\dfrac{\dfrac{2\left( {{y}_{1}}+{{y}_{2}}+{{y}_{3}} \right)}{2}}{3} \right)
=(x1+x2+x33,y1+y2+y33)=\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3},\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right)
= centroid of ΔABC\Delta ABC.
Hence , the statement (2)\left( 2 \right) is true.
So , we can conclude that statement (1)\left( 1 \right) is true, statement (2)\left( 2 \right) is true and statement (2)\left( 2 \right) is a correct explanation for statement(1)\left( 1 \right).
So, (1) Statement (1)\left( 1 \right) is true, statement (2)\left( 2 \right) is true; statement (2)\left( 2 \right) is a correct explanation for statement (1)\left( 1 \right).

Note: The midpoint of line joining the points (x1,y1) and (x2,y2)\left( {{x}_{1}},{{y}_{1}} \right)\text{ and }\left( {{x}_{2}},{{y}_{2}} \right) is given as:
((x1+x2)2,(y1+y2)2)\left( \dfrac{\left( {{x}_{1}}+{{x}_{2}} \right)}{2},\dfrac{\left( {{y}_{1}}+{{y}_{2}} \right)}{2} \right) and not ((x1x2)2,(y1y2)2)\left( \dfrac{\left( {{x}_{1}}-{{x}_{2}} \right)}{2},\dfrac{\left( {{y}_{1}}-{{y}_{2}} \right)}{2} \right) . Students often get confused between the two. Due to this confusion , they generally end up getting a wrong answer . So , such mistakes should be avoided .