Solveeit Logo

Question

Question: State whether the given is true or false. \(\dfrac{\cot \alpha +\cot \left( {{270}^{\circ }}-\alph...

State whether the given is true or false.
cotα+cot(270α)cotαcot(270α)2cos(135+α)cos(315α)=2cos2α\dfrac{\cot \alpha +\cot \left( {{270}^{\circ }}-\alpha \right)}{\cot \alpha -\cot \left( {{270}^{\circ }}-\alpha \right)}-2\cos ({{135}^{\circ }}+\alpha )\cos ({{315}^{\circ }}-\alpha )=2\cos 2\alpha
A)TrueA)True
B)FalseB)False

Explanation

Solution

Hint : To solve the question we need to have the knowledge of trigonometric identities. In this question we need to convert all the identities into different identities to prove the Right Hand Side of the expression. The concept used here will be that all the trigonometric functions is positive for the angles present in first quadrant, sin\sin and cosec\text{cosec} is a positive in second quadrant, cot\cot and tan\tan is a positive in third quadrant while cos\cos and sec\text{sec} is a positive for the angle in fourth quadrant.

Complete step-by-step solution:
The question ask us to check whether the expression given cotα+cot(270α)cotαcot(270α)2cos(135+α)cos(315α)=2cos2α\dfrac{\cot \alpha +\cot \left( {{270}^{\circ }}-\alpha \right)}{\cot \alpha -\cot \left( {{270}^{\circ }}-\alpha \right)}-2\cos ({{135}^{\circ }}+\alpha )\cos ({{315}^{\circ }}-\alpha )=2\cos 2\alpha is correct or not. We will consider the left hand side of the equation which is in fraction form. We will firstly convertcotα\cot \alpha into a function which will be much easier for us to work upon.
The first step will be to convert cot(270α)\cot \left( {{270}^{\circ }}-\alpha \right) into the trigonometric function with a single angle. For that we will convertcot(270α)\cot \left( {{270}^{\circ }}-\alpha \right) into tan\tan . Since the angle(270α)\left( {{270}^{\circ }}-\alpha \right)lies in the third quadrant and 270{{270}^{\circ }} is thrice of 90{{90}^{\circ }}. So the function cot(270α)\cot \left( {{270}^{\circ }}-\alpha \right) will be converted intotanα\tan \alpha , as cot\cot is positive in the third quadrant. So on writing this we get:
cotα+cot(270α)cotαcot(270α)=cotα+tanαcotαtanα\Rightarrow \dfrac{\cot \alpha +\cot \left( {{270}^{\circ }}-\alpha \right)}{\cot \alpha -\cot \left( {{270}^{\circ }}-\alpha \right)}=\dfrac{\cot \alpha +\tan \alpha }{\cot \alpha -\tan \alpha }
On dividing the fraction by cotα\cot \alpha we get:
cotα+cot(270α)cotαcot(270α)=cotα+tanαcotαcotαtanαcotα\Rightarrow \dfrac{\cot \alpha +\cot \left( {{270}^{\circ }}-\alpha \right)}{\cot \alpha -\cot \left( {{270}^{\circ }}-\alpha \right)}=\dfrac{\dfrac{\cot \alpha +\tan \alpha }{\cot \alpha }}{\dfrac{\cot \alpha -\tan \alpha }{\cot \alpha }}
cotα+cot(270α)cotαcot(270α)=1+tan2α1tan2α\Rightarrow \dfrac{\cot \alpha +\cot \left( {{270}^{\circ }}-\alpha \right)}{\cot \alpha -\cot \left( {{270}^{\circ }}-\alpha \right)}=\dfrac{1+{{\tan }^{2}}\alpha }{1-{{\tan }^{2}}\alpha }
Since the formula 1+tan2α1tan2α\dfrac{1+{{\tan }^{2}}\alpha }{1-{{\tan }^{2}}\alpha }is equal to cos2α\cos 2\alpha . So the above expression turns to:
cotα+cot(270α)cotαcot(270α)=1+tan2α1tan2α=cos2α\Rightarrow \dfrac{\cot \alpha +\cot \left( {{270}^{\circ }}-\alpha \right)}{\cot \alpha -\cot \left( {{270}^{\circ }}-\alpha \right)}=\dfrac{1+{{\tan }^{2}}\alpha }{1-{{\tan }^{2}}\alpha }=\cos 2\alpha ……….(i)
Now we will work upon the other part of the expression present in Left Hand Side.
2cos(135+α)cos(315α)=2cos(90+(45+α))cos(360(45+α))\Rightarrow 2\cos ({{135}^{\circ }}+\alpha )\cos ({{315}^{\circ }}-\alpha )=2\cos \left( {{90}^{\circ }}+\left( {{45}^{\circ }}+\alpha \right) \right)\cos \left( {{360}^{\circ }}-\left( {{45}^{\circ }}+\alpha \right) \right)
2cos(90+(45+α))cos(360(45+α))=2sin(45+α)cos(45+α)\Rightarrow 2\cos \left( {{90}^{\circ }}+\left( {{45}^{\circ }}+\alpha \right) \right)\cos \left( {{360}^{\circ }}-\left( {{45}^{\circ }}+\alpha \right) \right)=-2\sin \left( {{45}^{\circ }}+\alpha \right)\cos \left( {{45}^{\circ }}+\alpha \right)
2cos(90+(45+α))cos(360(45+α))=2sin(45+α)cos(45+α)\Rightarrow 2\cos \left( {{90}^{\circ }}+\left( {{45}^{\circ }}+\alpha \right) \right)\cos \left( {{360}^{\circ }}-\left( {{45}^{\circ }}+\alpha \right) \right)=-2\sin \left( {{45}^{\circ }}+\alpha \right)\cos \left( {{45}^{\circ }}+\alpha \right)
We will use the formula 2sinxcosx=sin2x2\sin x\cos x=\sin 2x in the above expression:
2cos(90+(45+α))cos(360(45+α))=sin(2(45+α))\Rightarrow 2\cos \left( {{90}^{\circ }}+\left( {{45}^{\circ }}+\alpha \right) \right)\cos \left( {{360}^{\circ }}-\left( {{45}^{\circ }}+\alpha \right) \right)=-\sin \left( 2\left( {{45}^{\circ }}+\alpha \right) \right)
2cos(90+(45+α))cos(360(45+α))=sin(90+2α)\Rightarrow 2\cos \left( {{90}^{\circ }}+\left( {{45}^{\circ }}+\alpha \right) \right)\cos \left( {{360}^{\circ }}-\left( {{45}^{\circ }}+\alpha \right) \right)=-\sin \left( {{90}^{\circ }}+2\alpha \right)
2cos(90+(45+α))cos(360(45+α))=cos2α\Rightarrow 2\cos \left( {{90}^{\circ }}+\left( {{45}^{\circ }}+\alpha \right) \right)\cos \left( {{360}^{\circ }}-\left( {{45}^{\circ }}+\alpha \right) \right)=-\cos 2\alpha ………..(ii)
On substituting the equation (i) and (ii) in the question we will get:
cotα+cot(270α)cotαcot(270α)2cos(135+α)cos(315α)\Rightarrow \dfrac{\cot \alpha +\cot \left( {{270}^{\circ }}-\alpha \right)}{\cot \alpha -\cot \left( {{270}^{\circ }}-\alpha \right)}-2\cos ({{135}^{\circ }}+\alpha )\cos ({{315}^{\circ }}-\alpha )
cos2α(cos2α)\Rightarrow \cos 2\alpha -(-\cos 2\alpha )
cos2α+cos2α\Rightarrow \cos 2\alpha +\cos 2\alpha
2cos2α\Rightarrow 2\cos 2\alpha
So the above expression is correct.
\therefore The above expression is A)TrueA)True .

Note: To solve this question we need to remember the quadrant in which the particular trigonometric function is positive or negative, as it helps in conversion of one trigonometric function to another. We need to remember the other trigonometric formulas too.