Solveeit Logo

Question

Mathematics Question on Trigonometric Ratios of Some Specific Angles

State whether the following are true or false. Justify your answer.
(i) sin (A + B) = sin A + sin B.
(ii) The value of sin θ\text{θ} increases as θ\text{θ} increases.
(iii) The value of cos θ\text{θ} increases as θ\text{θ} increases.
(iv) sin θ\text{θ} = cos θ\text{θ} for all values of θ\text{θ}.
(v) cot A is not defined for A = 0°

Answer

(i) sin(A + B) = sin A + sin B
Let A = 30° and B = 60°
sin (A + B) = sin (30° + 60°)
= sin 90°
= 1

sin A + sin B = sin 30° + sin 60°
=12+32=\frac{ 1}{2} + \frac{\sqrt3}{2}

=(1+3)2=\frac{ (1 + \sqrt3)}{2}
Clearly, sin (A + B) sin A + sin B
Hence, the given statement is false.


(ii) The value of sin θ\text{θ} increases as θ\text{θ} increases in the interval of 0° <θ<< \text{θ} < 90° as
sin 0° = 0
sin 30° = 12\frac{1}{2} = 0.5
sin 45° = 12\frac{1}{\sqrt2} = 0.707

sin 60° =32\frac{ \sqrt3}{2} = 0.866
sin 90° = 1
Hence, the given statement is true.


(iii) cos 0° = 1
cos 30° = 32\frac{\sqrt3}{2} = 0.866

cos 45° = 12\frac{1}{\sqrt2} = 0.707
cos 60° =12\frac{ 1}{2}= 0.5
cos 90° = 0
It can be observed that the value of cos θ\text{θ} does not increase in the interval of 0°<θ<< \text{θ} < 90°.
Hence, the given statement is false.


(iv) sin θ\text{θ} = cos θ\text{θ} for all values of θ\text{θ}.
This is true when θ\text{θ} = 45°
As sin 45° =12\frac{1}{\sqrt2} and cos 45° = 12\frac{1}{\sqrt2}
It is not true for other values of θ\text{θ}
sin 30° = 12\frac{1}{\sqrt2} and cos 30° = 32\frac{\sqrt3}{2}

sin 60° = 32\frac{\sqrt3}{2} and cos 60° = 12\frac{1}{\sqrt2}
sin 90° = 1 and cos 90° = 0
Hence, the given statement is false.


(v) cot A is not defined for A = 0°
cot A = cos Asin A\frac{\text{cos A}}{\text{sin A}}

cot 0° = cos 0°sin 0°=10=\frac{\text{cos 0°}}{\text{sin 0°}} = \frac{1}{0} = undefined
Hence, the given statement is true.