Question
Question: State, by writing first four terms, the expansion of following, where \[\left| x \right| < 1\] (i)...
State, by writing first four terms, the expansion of following, where ∣x∣<1
(i) (1+x)−4
(ii) (1−x)−31
(iii) (1−x2)−3
(iv) (1+x)−51
Solution
Here in this question, we have to write the first four terms by expanding each binomial expression. Given a four binomial expression having finite power this each expression can be expand by using a binomial theorem i.e., (a+b)n=r=0∑nnCran−r⋅br, where nCr=(n−r)!r!n! to get the required solution.
Complete step by step answer:
Binomial Theorem is used to solve any binomial expressions in a simplest way. It gives an expression to calculate the expansion form of (a+b)n for any positive integer n. The Binomial theorem is stated as: (a+b)n=r=0∑nnCran−r⋅br or
(a+b)n=nC0an+nC1an−1b1+nC2an−2b2+.....+nCran−rbr+.....+nCnbn-------(1)
If, ∣x∣<1 then the binomial expansion is can be written as sum of an infinite series
⇒(1+x)−n=1+1−n⋅x1+1×2(−n)(−n−1)⋅x2+1×2×3(−n)(−n−1)(−n−2)⋅x3+.....+1×2×...×r(−n)(−n−1)(−n−2)...(−n−r+1)⋅xr+.....∞
On simplification, we can written as
⇒(1+x)−n=1−nx+2!n(n+1)⋅x2−3!n(n+1)(n+2)⋅x3+.....+(−1)rr!n(n+1)(n+2)...(n+r−1)⋅xr+.....∞
-------(2)
The binomial expansion for (1−x)−n is given by
⇒(1−x)−n=1+nx+2!n(n+1)⋅x2+3!n(n+1)(n+2)⋅x3+.....+(−1)rr!n(n+1)(n+2)...(n+r−1)⋅xr+.....∞
-------(3)
Consider the question: Given 4 binomial expression, we have to expand each expression up to first four terms:
(i) (1+x)−4
Now by using a expansion i.e., equation (2)
n=4
On substituting, we have
⇒(1+x)−4=1−4x+2!4(4+1)⋅x2−3!4(4+1)(4+2)⋅x3+.....
⇒(1+x)−4=1−4x+24(5)⋅x2−64(5)(6)⋅x3+.....
⇒(1+x)−4=1−4x+220⋅x2−6120⋅x3+.....
The first four terms of binomial (1+x)−4 is
∴(1+x)−4=1−4x+10x2−20x3+......
(ii) (1−x)−31
Now by using a expansion i.e., equation (3)
n=31
On substituting, we have
⇒(1−x)−31=1+31x+2!31(31+1)⋅x2+3!31(31+1)(31+2)⋅x3+.....
⇒(1−x)−31=1+3x+231(34)⋅x2+631(34)(37)⋅x3+.....
⇒(1−x)−31=1+3x+184⋅x2+16228⋅x3+.....
The first four terms of binomial (1−x)−31 is
∴(1−x)−31=1+3x+92x2+8114x3+......
(iii) (1−x2)−3
Now by using a expansion i.e., equation (3)
n=3
On substituting, we have
⇒(1−x2)−3=1+3.x2+2!3(3+1)⋅x4+3!3(3+1)(3+2)⋅x6+.....
⇒(1−x2)−3=1+3x2+23(4)⋅x4+63(4)(7)⋅x6+.....
⇒(1−x2)−3=1+3x2+212⋅x4+684⋅x6+.....
The first four terms of binomial (1−x2)−3 is
∴(1−x2)−3=1+3x2+6x4+14x6+.....
(iv) (1+x)−51
Now by using a expansion i.e., equation (2)
n=−51
On substituting, we have
⇒(1+x)−51=1−51x+2!51(51+1)⋅x2−3!51(51+1)(51+2)⋅x3+.....
⇒(1+x)−51=1−5x+251(56)⋅x2−651(56)(511)⋅x3+.....
⇒(1+x)−51=1−5x+506⋅x2−75066⋅x3+.....
The first four terms of binomial (1+x)−4 is
∴(1+x)−51=1−5x+253x2−1256x3+......
Note: The four major binomial expansion is given as
(1+x)n=1+nx+2!n(n+1)⋅x2+3!n(n+1)(n+2)⋅x3+.....+(−1)rr!n(n+1)(n+2)...(n+r−1)⋅xr+.....∞
⇒(1+x)−n=1−nx+2!n(n+1)⋅x2−3!n(n+1)(n+2)⋅x3+.....+(−1)rr!n(n+1)(n+2)...(n+r−1)⋅xr+.....∞
⇒(1−x)n=1−nx+2!n(n+1)⋅x2−3!n(n+1)(n+2)⋅x3+.....+(−1)rr!n(n+1)(n+2)...(n+r−1)⋅xr+.....∞
⇒(1−x)−n=1+nx+2!n(n+1)⋅x2+3!n(n+1)(n+2)⋅x3+.....+(−1)rr!n(n+1)(n+2)...(n+r−1)⋅xr+.....∞
Using these expansions, any kind of problem can be solved. The value of x will depend on the question.