Solveeit Logo

Question

Question: State and prove Euler’s theorem for homogeneous function....

State and prove Euler’s theorem for homogeneous function.

Explanation

Solution

Here, we are required to state and prove the Euler’s theorem for homogeneous function. Euler’s theorem is used to establish a relationship between the partial derivatives of a function and the product of the function with its degree. Here, we will first write the statement pertaining to the mathematical expression of the Euler’s theorem, and explain it. We will then differentiate the function and manipulate it to obtain the required result.

Complete step by step solution:
Statement –
Euler’s theorem states that if ff is a homogeneous function of degree nn of the variables x,y,zx, y, z; then –
xfx+yfy+zfz=nfx\dfrac{{\partial f}}{{\partial x}} + y\dfrac{{\partial f}}{{\partial y}} + z\dfrac{{\partial f}}{{\partial z}} = nf, where, fx\dfrac{{\partial f}}{{\partial x}} is the partial derivative of the function ff w.r.t xx, fy\dfrac{{\partial f}}{{\partial y}} is the partial derivative of the function ff w.r.t yy and fz\dfrac{{\partial f}}{{\partial z}} is the partial derivative of the function ff w.r.t zz.
Proof –
Let f=u[x,y,z]f = u\left[ {x,y,z} \right] be a homogenous function of degree nn of the variables x,y,zx,y,z.
f=u[x,y,z]f = u\left[ {x,y,z} \right]…………[1]\left[ 1 \right]
Now, we know that –
u[X,Y,Z]=tnu[x,y,z]u\left[ {X,Y,Z} \right] = {t^n}u\left[ {x,y,z} \right]…………[2]\left[ 2 \right]
This is because when uu is a function of X,Y,ZX,Y,Z, then it becomes a function of x,y,z,tx,y,z,t because X,Y,ZX,Y,Z are a function of tt.
This means that –
X=xtn\Y=ytnZ=ztn\begin{array}{l}X = x{t^n}\\\Y = y{t^n}\\\Z = z{t^n}\end{array}
Now, we will consider the above equations for degree 1-
X=xtX = xt………[3]\left[ 3 \right]
Y=ytY = yt……….[4]\left[ 4 \right]
Z=ztZ = zt……….[5]\left[ 5 \right]
where, tt is any arbitrary parameter.
Now, we will differentiate the equation [3]\left[ 3 \right] partially w.r.t tt.
X=xt tX=txt Xt=xtt\begin{array}{l}X = xt\\\ \Rightarrow \dfrac{\partial }{{\partial t}}X = \dfrac{\partial }{{\partial t}}xt\\\ \Rightarrow \dfrac{{\partial X}}{{\partial t}} = x\dfrac{{\partial t}}{{\partial t}}\end{array}
Xt=x\Rightarrow \dfrac{{\partial X}}{{\partial t}} = x……….[6]\left[ 6 \right]
Again, we will differentiate the equation [4]\left[ 4 \right] partially w.r.t tt.
Y=yt tY=tyt\begin{array}{l}Y = yt\\\ \Rightarrow \dfrac{\partial }{{\partial t}}Y = \dfrac{\partial }{{\partial t}}yt\end{array}
Yt=y\Rightarrow \dfrac{{\partial Y}}{{\partial t}} = y………… [7]\left[ 7 \right]
We will differentiate the equation [5]\left[ 5 \right] partially w.r.t tt.
Z=zt tZ=tzt Zt=ztt\begin{array}{l}Z = zt\\\ \Rightarrow \dfrac{\partial }{{\partial t}}Z = \dfrac{\partial }{{\partial t}}zt\\\ \Rightarrow \dfrac{{\partial Z}}{{\partial t}} = z\dfrac{{\partial t}}{{\partial t}}\end{array}
Zt=z\Rightarrow \dfrac{{\partial Z}}{{\partial t}} = z…………[8]\left[ 8 \right]
Now, we will substitute t=1t = 1 in equation [3]\left[ 3 \right].
X=xt X=x[1]\begin{array}{l}X = xt\\\ \Rightarrow X = x\left[ 1 \right]\end{array}
Multiplying the terms, we get
X=xX = x…………….[9]\left[ 9 \right]
We will again substitute t=1t = 1 in equation [4]\left[ 4 \right].
Y=yt Y=y[1]\begin{array}{l}Y = yt\\\ \Rightarrow Y = y\left[ 1 \right]\end{array}
Multiplying the terms, we get
Y=yY = y…………….[10]\left[ {10} \right]
We will now substitute t=1t = 1 in equation [5]\left[ 5 \right].
Z=zt Z=z[1]\begin{array}{l}Z = zt\\\ \Rightarrow Z = z\left[ 1 \right]\end{array}
Multiplying the terms, we get
Z=zZ = z………….[11]\left[ {11} \right]
We will now differentiate the equation [1]\left[ 1 \right] partially w.r.t xx.
f=u[x,y,z]xf=xu[x,y,z]\begin{array}{l}f = u\left[ {x,y,z} \right]\\\\\dfrac{\partial }{{\partial x}}f = \dfrac{\partial }{{\partial x}}u\left[ {x,y,z} \right]\end{array}
fx=ux\dfrac{{\partial f}}{{\partial x}} = \dfrac{{\partial u}}{{\partial x}}………….[12]\left[ {12} \right]
Partial differentiation of y,zy,z w.r.t xx is 0.
Now, we will differentiate the equation [1]\left[ 1 \right] partially w.r.t yy.
f=u[x,y,z]yf=yu[x,y,z]\begin{array}{l}f = u\left[ {x,y,z} \right]\\\\\dfrac{\partial }{{\partial y}}f = \dfrac{\partial }{{\partial y}}u\left[ {x,y,z} \right]\end{array}
fy=uy\dfrac{{\partial f}}{{\partial y}} = \dfrac{{\partial u}}{{\partial y}}………..[13]\left[ {13} \right]
Partial differentiation of x,zx,z w.r.t yy is 0.
Again, we will differentiate the equation [1]\left[ 1 \right] partially w.r.t zz.
f=u[x,y,z]zf=zu[x,y,z]\begin{array}{l}f = u\left[ {x,y,z} \right]\\\\\dfrac{\partial }{{\partial z}}f = \dfrac{\partial }{{\partial z}}u\left[ {x,y,z} \right]\end{array}
fz=uz\dfrac{{\partial f}}{{\partial z}} = \dfrac{{\partial u}}{{\partial z}}………..[14]\left[ {14} \right]
Partial differentiation of x,yx,y w.r.t zz is 0.
Now, we will differentiate the equation [2]\left[ 2 \right] partially w.r.t tt.
Since, uuis a function of X,Y,ZX,Y,Z,and X,Y,ZX,Y,Z are a function of x,y,zx,y,z, and tt, thus apply the chain rule of partial differentiation to differentiate.
u[X,Y,Z]=tnu[x,y,z]u\left[ {X,Y,Z} \right] = {t^n}u\left[ {x,y,z} \right]
uxXt+uyYt+uzZt=ntn1u[x,y,z]\dfrac{{\partial u}}{{\partial x}} \cdot \dfrac{{\partial X}}{{\partial t}} + \dfrac{{\partial u}}{{\partial y}} \cdot \dfrac{{\partial Y}}{{\partial t}} + \dfrac{{\partial u}}{{\partial z}} \cdot \dfrac{{\partial Z}}{{\partial t}} = n{t^{n - 1}}u\left[ {x,y,z} \right]………..[15]\left[ {15} \right]
We will substitute xx for Xt\dfrac{{\partial X}}{{\partial t}}, yy for Yt\dfrac{{\partial Y}}{{\partial t}}, zz for Zt\dfrac{{\partial Z}}{{\partial t}}, fx\dfrac{{\partial f}}{{\partial x}} for ux\dfrac{{\partial u}}{{\partial x}}, fy\dfrac{{\partial f}}{{\partial y}} for uy\dfrac{{\partial u}}{{\partial y}}, fz\dfrac{{\partial f}}{{\partial z}} for uz\dfrac{{\partial u}}{{\partial z}} in equation [15]\left[ {15} \right].
Thus, the equation [15]\left[ {15} \right] becomes –
uxXt+uyYt+uzZt=ntn1u[x,y,z]\dfrac{{\partial u}}{{\partial x}} \cdot \dfrac{{\partial X}}{{\partial t}} + \dfrac{{\partial u}}{{\partial y}} \cdot \dfrac{{\partial Y}}{{\partial t}} + \dfrac{{\partial u}}{{\partial z}} \cdot \dfrac{{\partial Z}}{{\partial t}} = n{t^{n - 1}}u\left[ {x,y,z} \right]
Using the result of equations [9]\left[ 9 \right], [10]\left[ {10} \right], and [11]\left[ {11} \right], we can write above equation as
fxx+fyy+fzz=ntn1u[x,y,z]\dfrac{{\partial f}}{{\partial x}} \cdot x + \dfrac{{\partial f}}{{\partial y}} \cdot y + \dfrac{{\partial f}}{{\partial z}} \cdot z = n{t^{n - 1}}u\left[ {x,y,z} \right]……….[16]\left[ {16} \right]
We will again substitute t=1t = 1 and ff for u[x,y,z]u\left[ {x,y,z} \right] in the equation [16]\left[ {16} \right], we get
fxx+fyy+fzz=n[1]n1ffxx+fyy+fzz=nf\begin{array}{l}\dfrac{{\partial f}}{{\partial x}} \cdot x + \dfrac{{\partial f}}{{\partial y}} \cdot y + \dfrac{{\partial f}}{{\partial z}} \cdot z = n{\left[ 1 \right]^{n - 1}}f\\\\\dfrac{{\partial f}}{{\partial x}} \cdot x + \dfrac{{\partial f}}{{\partial y}} \cdot y + \dfrac{{\partial f}}{{\partial z}} \cdot z = nf\end{array}
Hence, the Euler’s equation is finally proved.

Note:
A homogeneous function of degree nn of the variables x,y,zx,y,z can be defined as a function in which all terms have degree nn. For example, consider the following function –
f[x,y,z]=Ax3+By3+Cz3+Dxy2+Exz2+Gyx2+Hyz2+Izx2+Jzy2+Kxyzf\left[ {x,y,z} \right] = A{x^3} + B{y^3} + C{z^3} + Dx{y^2} + Ex{z^2} + Gy{x^2} + Hy{z^2} + Iz{x^2} + Jz{y^2} + Kxyz
We can see that the degree of all the terms in the above function is three. Since, the degree is constant for all the terms, hence, the above function is a homogeneous function of degree 3.