Solveeit Logo

Question

Question: State and prove a multinomial theorem?...

State and prove a multinomial theorem?

Explanation

Solution

Multinomial theorem is the generalization of binomial theorem. Binomial theorem is given as (a+b)n=nC0(a)n(b)0+nC1(a)n1(b)1+nC2(a)n2(b)2+.....+nCn(a)0(b)n{\left( {a + b} \right)^n} = {}^n{C_0}{\left( a \right)^n}{\left( b \right)^0} + {}^n{C_1}{\left( a \right)^{n - 1}}{\left( b \right)^1} + {}^n{C_2}{\left( a \right)^{n - 2}}{\left( b \right)^2} + ..... + {}^n{C_n}{\left( a \right)^0}{\left( b \right)^n}.

Complete step by step solution:
Step 1: We have to state the multinomial theorem. It is the generalization of the binomial theorem. It describes how to expand a power of a sum in terms of powers of the terms in that sum. It states that “For any positive integer mm and any non – negative integer nn the sum of mm terms raised to power nn is expanded as
{\left( {{x_1} + {x_2} + ..... + {x_m}} \right)^n} = \sum\limits_{{k_1} + {k_2} + .... + {k_m} = n} {\left( {\begin{array}{*{20}{c}} n \\\ {{k_1},{k_2},....,{k_m}} \end{array}} \right)} \prod\limits_{t = 1}^m {x_t^{{k_t}}}
Where \left( {\begin{array}{*{20}{c}} n \\\ {{k_1},{k_2},....,{k_m}} \end{array}} \right) = \dfrac{{n!}}{{{k_1}!{k_2}!....{k_m}!}} is a multinomial coefficient. “
Here the important thing to keep in mind is that the sum is taken over all combinations of non negative integer indices k1{k_1} to km{k_m} is such that the sum of all ki{k_i} is nn .That is, for each term in the expansion, the exponent of the xi{x_i} must adds up to nn .
When the value of n=2n = 2 the multinomial theorem is converted into binomial theorem.
Step 2: Now, we can prove multinomial theorem by using binomial theorem and rule of mathematical induction. The expression holds for m=1m = 1 as LHS and RHS are equal.
Now, let us consider that above expression is true for the value of mm also.
Now we will prove the expression for m+1m + 1 . For that, writing the above expression for m+1m + 1 terms, we get
(x1+x2+.....+xm+xm+1)n{\left( {{x_1} + {x_2} + ..... + {x_m} + {x_{m + 1}}} \right)^n}
Separating the last two terms, we get

\Rightarrow {\left( {{x_1} + {x_2} + ..... + {x_{m - 1}} + \left( {{x_m} + {x_{m + 1}}} \right)} \right)^n} \\\ \Rightarrow \sum\limits_{{k_1} + {k_2} + .... + {k_{m - 1}} + K = n} {\left( {\begin{array}{*{20}{c}} n \\\ {{k_1},{k_2},....,{k_{m - 1}},K} \end{array}} \right)} \prod\limits_{t = 1}^{m - 1} {x_t^{{k_t}}} \times {\left( {{x_m} + {x_{m + 1}}} \right)^K} \\\

Now applying the binomial theorem for the last factor, we get

n \\\ {{k_1},{k_2},....,{k_{m - 1}},K} \end{array}} \right)} \left( {x_1^{{k_1}}x_2^{{k_2}}....x_{m - 1}^{{k_{m - 1}}}} \right) \times \sum\limits_{{k_m} + {k_{m + 1}} = K} {\left( {\begin{array}{*{20}{c}} K \\\ {{k_m},{k_{m + 1}}} \end{array}} \right)} \left( {x_m^{{k_m}}x_{m + 1}^{{k_{m + 1}}}} \right)$$ Step 3: Now in the above step, the value of

\left( {\begin{array}{{20}{c}}
n \\
{{k_1},{k_2},....,{k_{m - 1}},K}
\end{array}} \right) \times \left( {\begin{array}{
{20}{c}}
K \\
{{k_m},{k_{m + 1}}}
\end{array}} \right) \\
= \dfrac{{n!}}{{{k_1}!{k_2}!....{k_{m - 1}}!K!}} \times \dfrac{{K!}}{{{k_m}!{k_{m + 1}}!}} \\
= \dfrac{{n!}}{{{k_1}!{k_2}!....{k_{m - 1}}!{k_m}!{k_{m + 1}}!}} \\
= \left( {\begin{array}{*{20}{c}}
n \\
{{k_1},{k_2},....,{k_{m - 1}},{k_m},{k_{m + 1}}}
\end{array}} \right) \\

Substituting the value, we get $$ \Rightarrow \sum\limits_{{k_1} + {k_2} + .... + {k_{m - 1}} + {k_m} + {k_{m + 1}} = n} {\left( {\begin{array}{*{20}{c}} n \\\ {{k_1},{k_2},....,{k_{m - 1}},{k_m},{k_{m + 1}}} \end{array}} \right)} \left( {x_1^{{k_1}}x_2^{{k_2}}....x_{m - 1}^{{k_{m - 1}}}x_m^{{k_m}}x_{m + 1}^{{k_{m + 1}}}} \right)$$ **Hence proved.** **Note:** The induction hypothesis is proved for $n = 1$ . Then we assume that the statement is true for $n$ terms. Then by using this assumed result, we proved the statement for $n + 1$ terms.