Solveeit Logo

Question

Question: Starting with \[\dfrac{dx}{dy}=\dfrac{1}{\dfrac{dy}{dx}}\]. Prove that \[\dfrac{{{d}^{2}}y}{d{{y}^{2...

Starting with dxdy=1dydx\dfrac{dx}{dy}=\dfrac{1}{\dfrac{dy}{dx}}. Prove that d2ydy2=d2ydx2(dydx)3\dfrac{{{d}^{2}}y}{d{{y}^{2}}}=-\dfrac{\dfrac{{{d}^{2}}y}{d{{x}^{2}}}}{{{\left( \dfrac{dy}{dx} \right)}^{3}}} and deduce that for the parabola y2=4ax{{y}^{2}}=4ax, d2ydx2.d2xdy2=2ay3\dfrac{{{d}^{2}}y}{d{{x}^{2}}}.\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=-\dfrac{2a}{{{y}^{3}}}.
.

Explanation

Solution

Hint: Use the quotient rule of differentiation in the given question to get the desired result.

Here, starting with dxdy=1dydx\dfrac{dx}{dy}=\dfrac{1}{\dfrac{dy}{dx}}, we have to prove that d2ydy2=d2ydx2(dydx)3\dfrac{{{d}^{2}}y}{d{{y}^{2}}}=-\dfrac{\dfrac{{{d}^{2}}y}{d{{x}^{2}}}}{{{\left( \dfrac{dy}{dx} \right)}^{3}}}.
Also, we have to prove d2ydx2.d2xdy2=2ay3\dfrac{{{d}^{2}}y}{d{{x}^{2}}}.\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=-\dfrac{2a}{{{y}^{3}}}for parabola y2=4ax{{y}^{2}}=4ax.
Taking, dxdy=1dydx\dfrac{dx}{dy}=\dfrac{1}{\dfrac{dy}{dx}}
Now, we will differentiate both sides with respect to yy.
Also, we know that quotient rule says that,
ddy(fg)=g(dtdy)f(dgdy)g2\dfrac{d}{dy}\left( \dfrac{f}{g} \right)=\dfrac{g\left( \dfrac{dt}{dy} \right)-f\left( \dfrac{dg}{dy} \right)}{{{g}^{2}}}
In dxdy=1dydx\dfrac{dx}{dy}=\dfrac{1}{\dfrac{dy}{dx}}
f=1f=1and g=dydxg=\dfrac{dy}{dx}
Now, differentiating both sides with respect to yy.
We get, ddy(dxdy)=(dydx)ddy(1)(1)[ddy(dydx)](dydx)2\dfrac{d}{dy}\left( \dfrac{dx}{dy} \right)=\dfrac{\left( \dfrac{dy}{dx} \right)\dfrac{d}{dy}\left( 1 \right)-\left( 1 \right)\left[ \dfrac{d}{dy}\left( \dfrac{dy}{dx} \right) \right]}{{{\left( \dfrac{dy}{dx} \right)}^{2}}}
As we know that ddy(constant)=0\dfrac{d}{dy}\left( \text{constant} \right)=0
Therefore, we get
d2xdy2=0ddy(dydx)(dydx)2\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{0-\dfrac{d}{dy}\left( \dfrac{dy}{dx} \right)}{{{\left( \dfrac{dy}{dx} \right)}^{2}}}
Now we will multiply by dydx\dfrac{dy}{dx} on both the numerator and denominator of RHSRHS.
We get d2xdy2=ddy(dydx).dydx(dydx)2.dydx\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{-\dfrac{d}{dy}\left( \dfrac{dy}{dx} \right).\dfrac{dy}{dx}}{{{\left( \dfrac{dy}{dx} \right)}^{2}}.\dfrac{dy}{dx}}
We know that ddy(dydx).dydx=d2ydx2\dfrac{d}{dy}\left( \dfrac{dy}{dx} \right).\dfrac{dy}{dx}=\dfrac{{{d}^{2}}y}{d{{x}^{2}}}
Therefore, we get d2xdy2=d2ydx2(dydx)2\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{-\dfrac{{{d}^{2}}y}{d{{x}^{2}}}}{{{\left( \dfrac{dy}{dx} \right)}^{2}}}[Hence Proved]
which is our required result.
Now, we have to prove that d2ydx2.d2xdy2=2ay3\dfrac{{{d}^{2}}y}{d{{x}^{2}}}.\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=-\dfrac{2a}{{{y}^{3}}} for parabola y2=4ax{{y}^{2}}=4ax.
Now we take parabola, y2=4ax{{y}^{2}}=4ax.
So, we differentiate the above equation with respect to xx.
Also, we know that ddx(xn)=nxn1\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}
Therefore, 2ydydx=4a2y\dfrac{dy}{dx}=4a
dydx=2ay....(i)\dfrac{dy}{dx}=\dfrac{2a}{y}....\left( i \right)
Again differentiating both sides with respect to xx,
We get, d2ydx2=(2a)y11.dydx\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-\left( 2a \right){{y}^{-1-1}}.\dfrac{dy}{dx}
Now, we put the value of dydx\dfrac{dy}{dx}from equation (i)\left( i \right).
We get d2ydx2=2ay2.2ay\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-2a}{{{y}^{2}}}.\dfrac{2a}{y}
Therefore, d2ydx2=4a2y3....(ii)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-4{{a}^{2}}}{{{y}^{3}}}....\left( ii \right)
Now, from previous results, we know that
d2xdy2=d2ydx2(dydx)2\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{\dfrac{-{{d}^{2}}y}{d{{x}^{2}}}}{{{\left( \dfrac{dy}{dx} \right)}^{2}}}
By putting values from equation (i)\left( i \right)and (ii)\left( ii \right)
We get, d2xdy2=[4a2y3][2ay]3\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{-\left[ \dfrac{-4{{a}^{2}}}{{{y}^{3}}} \right]}{{{\left[ \dfrac{2a}{y} \right]}^{3}}}
d2xdy2=+4a2y38a3y3\Rightarrow \dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{\dfrac{+4{{a}^{2}}}{{{y}^{3}}}}{\dfrac{8{{a}^{3}}}{{{y}^{3}}}}
By cancelling the like terms,
We get, d2xdy2=+12a....(iii)\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{+1}{2a}....\left( iii \right)
Now we will multiply the equation (ii)\left( ii \right)and (iii)\left( iii \right).
We get, (d2ydx2)(d2xdy2)=(4a2y3).12a\left( \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)\left( \dfrac{{{d}^{2}}x}{d{{y}^{2}}} \right)=\left( \dfrac{-4{{a}^{2}}}{{{y}^{3}}} \right).\dfrac{1}{2a}
By cancelling the like terms,
We get, d2ydx2.d2xdy2=2ay3\dfrac{{{d}^{2}}y}{d{{x}^{2}}}.\dfrac{{{d}^{2}}x}{d{{y}^{2}}}=\dfrac{-2a}{{{y}^{3}}}which is the required result.

Note: In the term ddy(dydx)\dfrac{d}{dy}\left( \dfrac{dy}{dx} \right), some students cancel dydy from numerator and denominator considering them to be like terms but that is wrong and ddy(dydx)=d2ydx2dydx\dfrac{d}{dy}\left( \dfrac{dy}{dx} \right)=\dfrac{\dfrac{{{d}^{2}}y}{d{{x}^{2}}}}{\dfrac{dy}{dx}}.