Solveeit Logo

Question

Physics Question on Energy in simple harmonic motion

Starting from the origin a body oscillates simple harmonically with a period of 2 s. After what time will its kinetic energy be 75% of the total energy ?

A

16s\frac{1}{6} s

B

14s\frac{1}{4} s

C

13s\frac{1}{3}s

D

112s\frac{1}{12} s

Answer

16s\frac{1}{6} s

Explanation

Solution

KE of a body undergoing SHM is given by KE=12mω2A2cos2ωtandKEmax=mω2A22KE=\frac{1}{2} m\omega^{2} A^{2} cos^{2} \omega t \, and \, KE_{max} =\frac{m\omega^{2} A^{2}}{2} [symbols represent standard quantities] From given information KE=(KEmax)×75100KE=\left(KE_{max}\right)\times\frac{75}{100} mω2A22cos2ωt=mω2A22×34\Rightarrow\, \quad\frac{m\omega^{2} A^{2}}{2} cos^{2} \, \omega t=\frac{m\omega^{2} A^{2}}{2}\times\frac{3}{4} cosωt=±32\Rightarrow\, \quad cos\, \omega t =\pm\frac{\sqrt{3}}{2} ωt=π62πT×t=π6t=T12=16s\Rightarrow\, \quad\omega t=\frac{\pi}{6} \Rightarrow \frac{2\pi}{T} \times t=\frac{\pi}{6} \Rightarrow t =\frac{T}{12}=\frac{1}{6}s