Solveeit Logo

Question

Physics Question on laws of motion

Starting from rest, a body slides down a 4545^\circ inclined plane in twice the time it takes to slide down the same distance in the absence of friction. The coefficient of friction between the body and the inclined plane is

A

0.8

B

0.75

C

0.25

D

0.33

Answer

0.75

Explanation

Solution

The various forces acting on the body have been shown in the figure. The force on the body down the inclined plane in presence of friction μ\mu is

F=mgsinθf=mgsinθμN=maF=mgsin\theta -f=mgsin\theta-\mu N=ma
or a=gsinθμgcosθ.a=gsin\theta -\mu gcos\theta.
Since block is at rest thus initial velocity u = 0
\therefore Time taken to slide down the plane
t1=2sa=2sgsinθμgcosθt_1=\sqrt{\frac{2s}{a}}=\sqrt{\frac{2s}{g \sin \theta-\mu g \cos\theta}}
In absence of friction time taken will be t2=2sgsinθt_2=\sqrt{\frac{2s}{g \sin \theta}}
Given :t1=2t2.:t_1=2t_2.
t12=4t22\therefore t^2_1=4t^2_2 or 2sg(sinθμcosθ)=2s×4g(sinθ)\frac{2s}{g(\sin \theta -\mu \cos \theta)}={\frac{2s \times 4}{g (\sin \theta)}}
or sinθ=4sinθ4μcosθ\sin \theta=4\sin \theta-4 \mu \cos \theta or μ=34tanθ=0.75\mu=\frac{3}{4}\tan \theta =0.75