Solveeit Logo

Question

Question: Standard entropy of \({{\text{X}}_{\text{2}}}\), \({{\text{Y}}_{\text{2}}}\) and \[{\text{X}}{{\text...

Standard entropy of X2{{\text{X}}_{\text{2}}}, Y2{{\text{Y}}_{\text{2}}} and XY3{\text{X}}{{\text{Y}}_{\text{3}}} are 60{\text{60}}, 40{\text{40}} and 50 J K1 mol150{\text{ J }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}} respectively. For the reaction, 12X2+32Y2XY3ΔH=30 kJ\dfrac{1}{2}{{\text{X}}_2} + \dfrac{3}{2}{{\text{Y}}_2} \to {\text{X}}{{\text{Y}}_3}{\Delta {\text{H}}} = - 30{\text{ kJ}}. To be at equilibrium the temperature will be:
A) 500 K500{\text{ K}}
B) 750 K750{\text{ K}}
C) 1000 K1000{\text{ K}}
D) 1250 K1250{\text{ K}}

Explanation

Solution

The measure of randomness or disordered distribution is known as entropy. The randomness is always higher in a gaseous state. More the number of gaseous molecules higher is the entropy. To solve this we must know the expression that gives the relation between free energy, entropy and enthalpy.

Formula Used:
ΔSreaction=ΔSproductsΔSreactants{{\Delta }}{{\text{S}}_{{\text{reaction}}}} = {{\Delta }}{{\text{S}}_{{\text{products}}}} - {{\Delta }}{{\text{S}}_{{\text{reactants}}}}
ΔG=ΔHTΔS{{\Delta G}} = {{\Delta H}} - {{T\Delta S}}

Complete step by step answer:
We are given the reaction as follows:
12X2+32Y2XY3\dfrac{1}{2}{{\text{X}}_2} + \dfrac{3}{2}{{\text{Y}}_2} \to {\text{X}}{{\text{Y}}_3}
We know that the measure of randomness or disordered distribution is known as entropy.
We will first calculate the change in entropy of the reaction using the equation as follows:
ΔSreaction=ΔSproductsΔSreactants{{\Delta }}{{\text{S}}_{{\text{reaction}}}} = {{\Delta }}{{\text{S}}_{{\text{products}}}} - {{\Delta }}{{\text{S}}_{{\text{reactants}}}}
Where, ΔSreaction{{\Delta }}{{\text{S}}_{{\text{reaction}}}} is the change in entropy of the reaction.
We are given that the standard entropies of X2{{\text{X}}_{\text{2}}}, Y2{{\text{Y}}_{\text{2}}} and XY3{\text{X}}{{\text{Y}}_{\text{3}}} are 60{\text{60}}, 40{\text{40}} and 50 J K1 mol150{\text{ J }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}} respectively. Thus,
ΔSreaction=50(32×40+12×60){{\Delta }}{{\text{S}}_{{\text{reaction}}}} = {\text{50}} - \left( {\dfrac{3}{2} \times 40 + \dfrac{1}{2} \times 60} \right)
ΔSreaction=40 J K1 mol1{{\Delta }}{{\text{S}}_{{\text{reaction}}}} = - 40{\text{ J }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}}
Thus, the change in entropy of the reaction is 40 J K1 mol1 - 40{\text{ J }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}}.

We know the expression that gives the relation between free energy, entropy and enthalpy is as follows:
ΔG=ΔHTΔS{{\Delta G}} = {{\Delta H}} - {{T\Delta S}}
Where, ΔG{{\Delta G}} is the change in Gibbs free energy,
ΔH{{\Delta H}} is the change in enthalpy,
TT is the temperature,
ΔS{{\Delta S}} is the change in entropy.
At equilibrium, ΔG=0{\Delta G} = 0. Thus,
ΔH=TΔS{{\Delta H}} = {{T\Delta S}}
T=ΔHΔS{\text{T}} = \dfrac{{{{\Delta H}}}}{{{{\Delta S}}}}

We are given that for the reaction ΔH=30 kJ=30×103 J\Delta {\text{H}} = - 30{\text{ kJ}} = - 30 \times {10^3}{\text{ J}} and the change in entropy of the reaction is 40 J K1 mol1 - 40{\text{ J }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}}. Thus,
T=30×103 J40 J K1 mol1{\text{T}} = \dfrac{{ - 30 \times {{10}^3}{\text{ J}}}}{{ - 40{\text{ J }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}}}}
T=750 K{\text{T}} = 750{\text{ K}}
Thus, for the reaction to be at equilibrium the temperature will be 750 K750{\text{ K}}.

Thus, the correct option is (B).

Note: For an endothermic process, the value of ΔH\Delta H is positive. In an endothermic process, heat is absorbed and the system feels cold. A negative value of ΔH\Delta H indicates that the reaction is an exothermic process. In an exothermic process, heat is released or given out. We are given that for the reaction ΔH=30 kJ\Delta {\text{H}} = - 30{\text{ kJ}} and thus, the reaction is exothermic.