Solveeit Logo

Question

Question: $\sqrt{x} + \sqrt{y} \Rightarrow \sqrt{xy}$ $\frac{dy}{dx} \Rightarrow ?$...

x+yxy\sqrt{x} + \sqrt{y} \Rightarrow \sqrt{xy} dydx?\frac{dy}{dx} \Rightarrow ?

Answer

dydx=1(x1)3\frac{dy}{dx} = -\frac{1}{\left(\sqrt{x}-1\right)^3}

Explanation

Solution

  1. Rewrite x+y=xy\sqrt{x}+\sqrt{y}=\sqrt{xy} using u=xu=\sqrt{x} and v=yv=\sqrt{y} to get (u1)(v1)=1(u-1)(v-1)=1.

  2. Differentiate x+y=xy\sqrt{x}+\sqrt{y}=\sqrt{xy} implicitly to obtain:

    12x+12ydydx=12xy(y+xdydx).\frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{y}}\frac{dy}{dx}=\frac{1}{2\sqrt{xy}}\left(y+x\frac{dy}{dx}\right).
  3. Simplify and collect dydx\frac{dy}{dx} terms to get a relation.

  4. Using the relation from the factorization, find the explicit derivative:

    dydx=1(x1)3.\frac{dy}{dx} = -\frac{1}{(\sqrt{x}-1)^3}.