Solveeit Logo

Question

Question: \(\sqrt{\mathbf{(3 +}\sqrt{\mathbf{5}}\mathbf{)}}\)is equal to...

(3+5)\sqrt{\mathbf{(3 +}\sqrt{\mathbf{5}}\mathbf{)}}is equal to

A

5+1\sqrt{5} + 1

B

3+2\sqrt{3} + \sqrt{2}

C

(5+1)/2(\sqrt{5} + 1)/\sqrt{2}

D

12(5+1)\frac{1}{2}(\sqrt{5} + 1)

Answer

(5+1)/2(\sqrt{5} + 1)/\sqrt{2}

Explanation

Solution

Let 3+5=x+y\sqrt{3 + \sqrt{5}} = \sqrt{x} + \sqrt{y}

3+5=x+y+2xy3 + \sqrt{5} = x + y + 2\sqrt{xy}. Obviously x+y=3x + y = 3 and 4xy=54xy = 5.

So (xy)2=95=4(x - y)^{2} = 9 - 5 = 4or (xy)=2(x - y) = 2

After solving x=52,y=12x = \frac{5}{2},y = \frac{1}{2}. Hence

3+5=52+12=5+12\sqrt{3 + \sqrt{5}} = \sqrt{\frac{5}{2}} + \sqrt{\frac{1}{2}} = \frac{\sqrt{5} + 1}{\sqrt{2}}