Solveeit Logo

Question

Question: If the ionization energy of $He^+$ is $19.6 \times 10^{-18}$ J per atom then the energy of $Be^{3+}$...

If the ionization energy of He+He^+ is 19.6×101819.6 \times 10^{-18} J per atom then the energy of Be3+Be^{3+} ion in the second stationary state is :

A

-4.9 x 10^{-18} J

B

-44.1 x 10^{-18} J

C

-11.025 x 10^{-18} J

D

None of these

Answer

None of these

Explanation

Solution

The energy of an electron in the nn-th stationary state of a hydrogen-like atom with atomic number ZZ is given by the formula: En=kZ2n2E_n = -k \frac{Z^2}{n^2} where kk is a constant. The ionization energy (IEIE) is the energy required to remove an electron from the ground state (n=1n=1) to infinity (n=n=\infty), so IE=EE1=0E1=E1IE = E_{\infty} - E_1 = 0 - E_1 = -E_1.

Given the ionization energy of He+He^+ (Z=2Z=2) is 19.6×101819.6 \times 10^{-18} J. This means the energy of He+He^+ in its ground state (n=1n=1) is E1(He+)=19.6×1018E_1(He^+) = -19.6 \times 10^{-18} J.

Using the formula for He+He^+ in the ground state (Z=2,n=1Z=2, n=1): E1(He+)=k2212=4kE_1(He^+) = -k \frac{2^2}{1^2} = -4k

Equating this to the given ionization energy: 19.6×1018 J=4k-19.6 \times 10^{-18} \text{ J} = -4k k=19.6×10184 J=4.9×1018 Jk = \frac{19.6 \times 10^{-18}}{4} \text{ J} = 4.9 \times 10^{-18} \text{ J}

Now, we need to find the energy of Be3+Be^{3+} (Z=4Z=4) in the second stationary state (n=2n=2). Using the same formula with the calculated constant kk: E2(Be3+)=kZBe2n2E_2(Be^{3+}) = -k \frac{Z_{Be}^2}{n^2} E2(Be3+)=(4.9×1018 J)4222E_2(Be^{3+}) = -(4.9 \times 10^{-18} \text{ J}) \frac{4^2}{2^2} E2(Be3+)=(4.9×1018 J)164E_2(Be^{3+}) = -(4.9 \times 10^{-18} \text{ J}) \frac{16}{4} E2(Be3+)=(4.9×1018 J)×4E_2(Be^{3+}) = -(4.9 \times 10^{-18} \text{ J}) \times 4 E2(Be3+)=19.6×1018 JE_2(Be^{3+}) = -19.6 \times 10^{-18} \text{ J}

The calculated energy, 19.6×1018-19.6 \times 10^{-18} J, is not present in options (a), (b), or (c). Therefore, the correct option is (d).

The expression Vm\sqrt{\frac{V}{m}} at the beginning of the question is irrelevant to the problem.