Solveeit Logo

Question

Question: \(\sqrt{\frac{1 - \sin\theta}{1 + \sin\theta}}\) equals...

1sinθ1+sinθ\sqrt{\frac{1 - \sin\theta}{1 + \sin\theta}} equals

A

0

B

1

C

secθtanθ\sec\theta - \tan\theta

D

secθ.tanθ\sec\theta.\tan\theta

Answer

secθtanθ\sec\theta - \tan\theta

Explanation

Solution

(1sinθ)2(1sin2θ)=1sinθcosθ=secθtanθ\sqrt{\frac{(1 - \sin\theta)^{2}}{(1 - \sin^{2}\theta)}} = \frac{1 - \sin\theta}{\cos\theta} = \sec\theta - \tan\theta.