Solveeit Logo

Question

Question: $\sqrt{5-x}=(5-x^2)$...

5x=(5x2)\sqrt{5-x}=(5-x^2)

Answer

The solutions are x=1+212x = \frac{-1 + \sqrt{21}}{2} and x=1172x = \frac{1 - \sqrt{17}}{2}.

Explanation

Solution

The problem asks to solve the equation 5x=(5x2)\sqrt{5-x}=(5-x^2). The given steps correctly derive the equation 10=(2x2+1)±(2x1)10=(2x^2+1) \pm (2x-1) from the original equation ax=ax2\sqrt{a-x}=a-x^2 by setting a=5a=5.

Solution:

The original equation is 5x=5x2\sqrt{5-x}=5-x^2. For the square root to be defined, 5x0    x55-x \ge 0 \implies x \le 5. For the right side to be non-negative (since it equals a square root), 5x20    x25    5x55-x^2 \ge 0 \implies x^2 \le 5 \implies -\sqrt{5} \le x \le \sqrt{5}. Combining these conditions, the valid range for xx is [5,5][-\sqrt{5}, \sqrt{5}], which is approximately [2.236,2.236][-2.236, 2.236].

The provided steps lead to the equation: 10=(2x2+1)±(2x1)10 = (2x^2+1) \pm (2x-1)

We consider two cases based on the ±\pm sign, which arises from (2x1)2=2x1\sqrt{(2x-1)^2} = |2x-1|.

Case 1: 10=(2x2+1)+(2x1)10 = (2x^2+1) + (2x-1) 10=2x2+2x10 = 2x^2 + 2x Dividing by 2: 5=x2+x5 = x^2 + x x2+x5=0x^2 + x - 5 = 0 Using the quadratic formula x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2-4ac}}{2a}: x=1±124(1)(5)2(1)x = \frac{-1 \pm \sqrt{1^2 - 4(1)(-5)}}{2(1)} x=1±1+202x = \frac{-1 \pm \sqrt{1 + 20}}{2} x=1±212x = \frac{-1 \pm \sqrt{21}}{2}

Let's check these values against the valid range [5,5][-\sqrt{5}, \sqrt{5}]: x1=1+2121+4.582=3.582=1.79x_1 = \frac{-1 + \sqrt{21}}{2} \approx \frac{-1 + 4.58}{2} = \frac{3.58}{2} = 1.79. This value is within the range. For this solution, 2x1=2122.58>02x-1 = \sqrt{21}-2 \approx 2.58 > 0, so this corresponds to the '+' sign in 10=(2x2+1)+(2x1)10 = (2x^2+1) + (2x-1). This is a valid solution.

x2=121214.582=5.582=2.79x_2 = \frac{-1 - \sqrt{21}}{2} \approx \frac{-1 - 4.58}{2} = \frac{-5.58}{2} = -2.79. This value is outside the range. Thus, x2x_2 is an extraneous solution.

Case 2: 10=(2x2+1)(2x1)10 = (2x^2+1) - (2x-1) 10=2x2+12x+110 = 2x^2 + 1 - 2x + 1 10=2x22x+210 = 2x^2 - 2x + 2 Dividing by 2: 5=x2x+15 = x^2 - x + 1 x2x4=0x^2 - x - 4 = 0 Using the quadratic formula: x=(1)±(1)24(1)(4)2(1)x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(-4)}}{2(1)} x=1±1+162x = \frac{1 \pm \sqrt{1 + 16}}{2} x=1±172x = \frac{1 \pm \sqrt{17}}{2}

Let's check these values against the valid range [5,5][-\sqrt{5}, \sqrt{5}]: x3=1+1721+4.122=5.122=2.56x_3 = \frac{1 + \sqrt{17}}{2} \approx \frac{1 + 4.12}{2} = \frac{5.12}{2} = 2.56. This value is outside the range. Thus, x3x_3 is an extraneous solution.

x4=117214.122=3.122=1.56x_4 = \frac{1 - \sqrt{17}}{2} \approx \frac{1 - 4.12}{2} = \frac{-3.12}{2} = -1.56. This value is within the range. For this solution, 2x1=1171=174.12<02x-1 = 1-\sqrt{17}-1 = -\sqrt{17} \approx -4.12 < 0, so this corresponds to the '-' sign in 10=(2x2+1)(2x1)10 = (2x^2+1) - (2x-1). This is a valid solution.

Both valid solutions must satisfy the original equation. We have verified both solutions in the thought process.

The solutions to the equation are x=1+212x = \frac{-1 + \sqrt{21}}{2} and x=1172x = \frac{1 - \sqrt{17}}{2}.

Explanation of the solution:

  1. Establish domain for xx: 5x0    x55-x \ge 0 \implies x \le 5 and 5x20    5x55-x^2 \ge 0 \implies -\sqrt{5} \le x \le \sqrt{5}. Combined, x[5,5]x \in [-\sqrt{5}, \sqrt{5}].
  2. Square both sides of 5x=5x2\sqrt{5-x}=5-x^2 to get 5x=(5x2)25-x = (5-x^2)^2.
  3. Rearrange the squared equation to form a quadratic in x2x^2 or xx, or solve for a=5a=5 in the general form a2(2x2+1)a+x4+x=0a^2-(2x^2+1)a+x^4+x=0.
  4. The given steps correctly lead to 10=(2x2+1)±(2x1)10 = (2x^2+1) \pm (2x-1).
  5. Solve two separate quadratic equations for xx:
    • 10=2x2+1+2x1    x2+x5=0    x=1±21210 = 2x^2+1 + 2x-1 \implies x^2+x-5=0 \implies x = \frac{-1 \pm \sqrt{21}}{2}.
    • 10=2x2+1(2x1)    x2x4=0    x=1±17210 = 2x^2+1 - (2x-1) \implies x^2-x-4=0 \implies x = \frac{1 \pm \sqrt{17}}{2}.
  6. Filter solutions based on the domain x[5,5]x \in [-\sqrt{5}, \sqrt{5}].
    • 1+2121.79\frac{-1 + \sqrt{21}}{2} \approx 1.79 is valid.
    • 12122.79\frac{-1 - \sqrt{21}}{2} \approx -2.79 is extraneous.
    • 1+1722.56\frac{1 + \sqrt{17}}{2} \approx 2.56 is extraneous.
    • 11721.56\frac{1 - \sqrt{17}}{2} \approx -1.56 is valid.
  7. The valid solutions are 1+212\frac{-1 + \sqrt{21}}{2} and 1172\frac{1 - \sqrt{17}}{2}.