Solveeit Logo

Question

Question: $\sqrt{3}cos\theta + sin\theta = \sqrt{2}$...

3cosθ+sinθ=2\sqrt{3}cos\theta + sin\theta = \sqrt{2}

A

θ=π2+π6\theta = \frac{\pi}{2} + \frac{\pi}{6}

B

π2π6\frac{\pi}{2} - \frac{\pi}{6}

C

π5π3\frac{\pi}{5} - \frac{\pi}{3}

D

π4+π3\frac{\pi}{4} + \frac{\pi}{3}

Answer

None of the given options are correct. The general solutions are

θ=5π12+2πkandθ=π12+2πk,kZ.\theta=\frac{5\pi}{12}+2\pi k\quad \text{and}\quad \theta=-\frac{\pi}{12}+2\pi k,\quad k\in\mathbb{Z}.
Explanation

Solution

Solution:

We start with the given equation:

3cosθ+sinθ=2.\sqrt{3}\cos\theta+\sin\theta=\sqrt{2}.

Step 1. Write in the form Rcos(θϕ)R\cos(\theta-\phi):

For an expression acosθ+bsinθa\cos\theta+b\sin\theta we have

R=a2+b2=(3)2+12=3+1=2.R=\sqrt{a^2+b^2}=\sqrt{(\sqrt{3})^2+1^2}=\sqrt{3+1}=2.

And

cosϕ=aR=32,sinϕ=12.\cos\phi=\frac{a}{R}=\frac{\sqrt{3}}{2},\quad \sin\phi=\frac{1}{2}.

Thus, ϕ=π6\phi=\frac{\pi}{6}.

So the equation becomes:

2cos(θπ6)=2.2\cos\Big(\theta-\frac{\pi}{6}\Big)=\sqrt{2}.

Step 2. Solve for θ\theta:

Divide both sides by 2:

cos(θπ6)=22.\cos\Big(\theta-\frac{\pi}{6}\Big)=\frac{\sqrt{2}}{2}.

Recall that

cosx=22x=π4+2πkorx=π4+2πk,kZ.\cos x=\frac{\sqrt{2}}{2}\quad\Longrightarrow\quad x=\frac{\pi}{4}+2\pi k\quad \text{or}\quad x=-\frac{\pi}{4}+2\pi k,\quad k\in\mathbb{Z}.

Thus,

θπ6=π4+2πkorθπ6=π4+2πk.\theta-\frac{\pi}{6}=\frac{\pi}{4}+2\pi k\quad\text{or}\quad \theta-\frac{\pi}{6}=-\frac{\pi}{4}+2\pi k.

So the solutions are:

θ=π4+π6+2πk=5π12+2πk,\theta=\frac{\pi}{4}+\frac{\pi}{6}+2\pi k=\frac{5\pi}{12}+2\pi k,

and

θ=π4+π6+2πk=3π+2π12+2πk=π12+2πk.\theta=-\frac{\pi}{4}+\frac{\pi}{6}+2\pi k=\frac{-3\pi+2\pi}{12}+2\pi k=\frac{-\pi}{12}+2\pi k.

Step 3. Compare with given options:

The provided options are:

  1. θ=π2+π6=2π3\theta=\frac{\pi}{2}+\frac{\pi}{6}=\frac{2\pi}{3}
  2. θ=π2π6=π3\theta=\frac{\pi}{2}-\frac{\pi}{6}=\frac{\pi}{3}
  3. θ=π5π3\theta=\frac{\pi}{5}-\frac{\pi}{3}
  4. θ=π4+π3=7π12\theta=\frac{\pi}{4}+\frac{\pi}{3}=\frac{7\pi}{12}

Neither 5π12\frac{5\pi}{12} nor π12-\frac{\pi}{12} matches any of these options.

Answer: None of the given options are correct. The general solutions are

θ=5π12+2πkandθ=π12+2πk,kZ.\theta=\frac{5\pi}{12}+2\pi k\quad \text{and}\quad \theta=-\frac{\pi}{12}+2\pi k,\quad k\in\mathbb{Z}.