Question
Question: $\sqrt{3}cos\theta + sin\theta = \sqrt{2}$...
3cosθ+sinθ=2

A
θ=2π+6π
B
2π−6π
C
5π−3π
D
4π+3π
Answer
None of the given options are correct. The general solutions are
θ=125π+2πkandθ=−12π+2πk,k∈Z.Explanation
Solution
Solution:
We start with the given equation:
3cosθ+sinθ=2.Step 1. Write in the form Rcos(θ−ϕ):
For an expression acosθ+bsinθ we have
R=a2+b2=(3)2+12=3+1=2.And
cosϕ=Ra=23,sinϕ=21.Thus, ϕ=6π.
So the equation becomes:
2cos(θ−6π)=2.Step 2. Solve for θ:
Divide both sides by 2:
cos(θ−6π)=22.Recall that
cosx=22⟹x=4π+2πkorx=−4π+2πk,k∈Z.Thus,
θ−6π=4π+2πkorθ−6π=−4π+2πk.So the solutions are:
θ=4π+6π+2πk=125π+2πk,and
θ=−4π+6π+2πk=12−3π+2π+2πk=12−π+2πk.Step 3. Compare with given options:
The provided options are:
- θ=2π+6π=32π
- θ=2π−6π=3π
- θ=5π−3π
- θ=4π+3π=127π
Neither 125π nor −12π matches any of these options.
Answer: None of the given options are correct. The general solutions are
θ=125π+2πkandθ=−12π+2πk,k∈Z.