Solveeit Logo

Question

Question: $\triangle ABC$ is inscribed in a circle of radius 10 cm. If $a=10$ cm then $\angle B + \angle C = ?...

ABC\triangle ABC is inscribed in a circle of radius 10 cm. If a=10a=10 cm then B+C=?\angle B + \angle C = ?

A

4545^{\circ}

B

3030^{\circ}

C

150150^{\circ}

D

120120^{\circ}

Answer

B+C=150\angle B + \angle C = 150^{\circ}

Explanation

Solution

Given: Triangle ABCABC is inscribed in a circle of radius R=10R = 10 cm and side a=10a = 10 cm (opposite to angle AA).

Using the chord formula:

a=2RsinA    10=2×10×sinA    sinA=1020=0.5a = 2R \sin A \implies 10 = 2 \times 10 \times \sin A \implies \sin A = \frac{10}{20} = 0.5

Thus, A=30A = 30^\circ.

Since the sum of angles in a triangle is 180180^\circ:

B+C=180A=18030=150.\angle B + \angle C = 180^\circ - A = 180^\circ - 30^\circ = 150^\circ.