Solveeit Logo

Question

Question: \[\sqrt{2 + \sqrt{2 + 2\cos 4\theta}} =\]...

2+2+2cos4θ=\sqrt{2 + \sqrt{2 + 2\cos 4\theta}} =

A

cosθ\cos\theta

B

sinθ\sin\theta

C

2cosθ2\cos\theta

D

2sinθ2\sin\theta

Answer

2cosθ2\cos\theta

Explanation

Solution

2+2+2cos4θ\sqrt{2 + \sqrt{2 + 2\cos 4\theta}}=2+2.2cos22θ\sqrt{2 + \sqrt{2.2\cos^{2}2\theta}}

=2+2cos2θ=4cos2θ=2cosθ= \sqrt{2 + 2\cos 2\theta} = \sqrt{4\cos^{2}\theta} = 2\cos\theta.