Solveeit Logo

Question

Question: \[\sqrt{1 + x^{2}} + \tan^{- 1}x + c\]...

1+x2+tan1x+c\sqrt{1 + x^{2}} + \tan^{- 1}x + c

A

1+x2log{x+1+x2}+c\sqrt{1 + x^{2}} - \log\{ x + \sqrt{1 + x^{2}}\} + c

B

1+x2+log{x+1+x2}+c\sqrt{1 + x^{2}} + \log\{ x + \sqrt{1 + x^{2}}\} + c

C

1+x2+log(secx+tanx)+c\sqrt{1 + x^{2}} + \log(\sec x + \tan x) + c

D

None of these

Answer

1+x2+log{x+1+x2}+c\sqrt{1 + x^{2}} + \log\{ x + \sqrt{1 + x^{2}}\} + c

Explanation

Solution

14(x+1x)4+c\frac{1}{4}\left( x + \frac{1}{x} \right)^{4} + c

Put x44+3x22+3logx12x2+c\frac{x^{4}}{4} + \frac{3x^{2}}{2} + 3\log x - \frac{1}{2x^{2}} + c

then it reduces to

x44+3x22+3logx+1x2+c\frac{x^{4}}{4} + \frac{3x^{2}}{2} + 3\log x + \frac{1}{x^{2}} + c