Solveeit Logo

Question

Question: $\sqrt{1 + \sin \theta}$ is equal to...

1+sinθ\sqrt{1 + \sin \theta} is equal to

A

sinθ+cosθ\sin \theta + \cos \theta

B

sinθcosθ\sin \theta - \cos \theta

C

sinθ2+cosθ2\sin \frac{\theta}{2} + \cos \frac{\theta}{2}

D

sinθ2cosθ2\sin \frac{\theta}{2} - \cos \frac{\theta}{2}

Answer

sinθ2+cosθ2\sin \frac{\theta}{2} + \cos \frac{\theta}{2}

Explanation

Solution

To simplify the expression 1+sinθ\sqrt{1 + \sin \theta}, we use fundamental trigonometric identities.

We know that:

  1. The Pythagorean identity: sin2x+cos2x=1\sin^2 x + \cos^2 x = 1.
  2. The double angle identity for sine: sin2x=2sinxcosx\sin 2x = 2 \sin x \cos x.

Let's apply these identities by setting x=θ2x = \frac{\theta}{2}.
Then, we can write 11 as sin2θ2+cos2θ2\sin^2 \frac{\theta}{2} + \cos^2 \frac{\theta}{2}, and we can write sinθ\sin \theta as 2sinθ2cosθ22 \sin \frac{\theta}{2} \cos \frac{\theta}{2}.

Substitute these into the expression 1+sinθ1 + \sin \theta:

1+sinθ=(sin2θ2+cos2θ2)+(2sinθ2cosθ2)1 + \sin \theta = \left(\sin^2 \frac{\theta}{2} + \cos^2 \frac{\theta}{2}\right) + \left(2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}\right)

This expression is in the form of (a2+b2+2ab)(a^2 + b^2 + 2ab), which is the expansion of (a+b)2(a+b)^2.
Here, a=sinθ2a = \sin \frac{\theta}{2} and b=cosθ2b = \cos \frac{\theta}{2}.
So, 1+sinθ=(sinθ2+cosθ2)21 + \sin \theta = \left(\sin \frac{\theta}{2} + \cos \frac{\theta}{2}\right)^2.

Now, we need to find the square root of this expression:

1+sinθ=(sinθ2+cosθ2)2\sqrt{1 + \sin \theta} = \sqrt{\left(\sin \frac{\theta}{2} + \cos \frac{\theta}{2}\right)^2}

Therefore, 1+sinθ=sinθ2+cosθ2\sqrt{1 + \sin \theta} = \left|\sin \frac{\theta}{2} + \cos \frac{\theta}{2}\right|.

Given the options, the most appropriate answer is the simplified form without the absolute value, assuming the principal root and a suitable domain for θ\theta.