Solveeit Logo

Question

Question: ∫sqrt(1-4x^2)dx...

∫sqrt(1-4x^2)dx

Answer

\frac{x}{2}\sqrt{1-4x^2} + \frac{1}{4}\sin^{-1}(2x) + C

Explanation

Solution

To evaluate the integral 14x2dx\int \sqrt{1-4x^2}dx, we can use a substitution method to transform it into a standard integral form.

1. Rewrite the integrand: The expression inside the square root can be written as 1(2x)21 - (2x)^2. So, the integral becomes 1(2x)2dx\int \sqrt{1-(2x)^2}dx.

2. Perform substitution: Let u=2xu = 2x. Differentiating both sides with respect to xx, we get: du=2dxdu = 2dx From this, we can express dxdx as: dx=12dudx = \frac{1}{2}du

3. Substitute into the integral: Substitute uu and dxdx into the integral: 1u2(12du)=121u2du\int \sqrt{1-u^2} \left(\frac{1}{2}du\right) = \frac{1}{2} \int \sqrt{1-u^2}du

4. Apply the standard integral formula: This integral is now in the standard form a2x2dx\int \sqrt{a^2-x^2}dx, where a=1a=1 and the variable is uu. The standard formula for this type of integral is: a2x2dx=x2a2x2+a22sin1(xa)+C\int \sqrt{a^2-x^2}dx = \frac{x}{2}\sqrt{a^2-x^2} + \frac{a^2}{2}\sin^{-1}\left(\frac{x}{a}\right) + C Applying this formula with a=1a=1 and variable uu: 12[u21u2+122sin1(u1)]+C\frac{1}{2} \left[ \frac{u}{2}\sqrt{1-u^2} + \frac{1^2}{2}\sin^{-1}\left(\frac{u}{1}\right) \right] + C =12[u21u2+12sin1(u)]+C= \frac{1}{2} \left[ \frac{u}{2}\sqrt{1-u^2} + \frac{1}{2}\sin^{-1}(u) \right] + C

5. Substitute back the original variable: Now, substitute u=2xu=2x back into the expression: 12[2x21(2x)2+12sin1(2x)]+C\frac{1}{2} \left[ \frac{2x}{2}\sqrt{1-(2x)^2} + \frac{1}{2}\sin^{-1}(2x) \right] + C =12[x14x2+12sin1(2x)]+C= \frac{1}{2} \left[ x\sqrt{1-4x^2} + \frac{1}{2}\sin^{-1}(2x) \right] + C Distribute the 12\frac{1}{2}: =x214x2+14sin1(2x)+C= \frac{x}{2}\sqrt{1-4x^2} + \frac{1}{4}\sin^{-1}(2x) + C

The final answer is x214x2+14sin1(2x)+C\frac{x}{2}\sqrt{1-4x^2} + \frac{1}{4}\sin^{-1}(2x) + C.

Explanation of the solution:

The integral 14x2dx\int \sqrt{1-4x^2}dx is transformed into a standard form using the substitution u=2xu=2x, which implies dx=12dudx = \frac{1}{2}du. This yields 121u2du\frac{1}{2}\int \sqrt{1-u^2}du. Applying the standard integral formula a2x2dx=x2a2x2+a22sin1(xa)+C\int \sqrt{a^2-x^2}dx = \frac{x}{2}\sqrt{a^2-x^2} + \frac{a^2}{2}\sin^{-1}\left(\frac{x}{a}\right) + C with a=1a=1 and substituting back u=2xu=2x gives the result.