Solveeit Logo

Question

Question: \(\sqrt{1 - c^{2}}\)= nc – 1 and z = e<sup>iq</sup> then \(\frac{c}{2n}\) (1 + nz) \(\left( 1 + \fra...

1c2\sqrt{1 - c^{2}}= nc – 1 and z = eiq then c2n\frac{c}{2n} (1 + nz) (1+nz)\left( 1 + \frac{n}{z} \right) =

A

1 – c cos q

B

1 + 2c cos q

C

1 + c cos q

D

1 – 2c cos q

Answer

1 + c cos q

Explanation

Solution

Sol. Here, 1c2\sqrt{1 - c^{2}} = nc – 1

Ž 1 – c2 = n2c2 – 2nc + 1

c2n\frac{c}{2n} = 11+n2\frac{1}{1 + n^{2}}

\ c2n\frac{c}{2n} (1 + nz) (1+nz)\left( 1 + \frac{n}{z} \right)

= {1+n2+n(z+1z)}\left\{ 1 + n^{2} + n\left( z + \frac{1}{z} \right) \right\}

= 11+n2\frac{1}{1 + n^{2}}{1 + n2 + n . (2 cos q)}

= (1+n2)+2ncosθ1+n2\frac{(1 + n^{2}) + 2n\cos\theta}{1 + n^{2}}

= 1 + (2n1+n2)\left( \frac{2n}{1 + n^{2}} \right) cos q ; using (1)

= 1 + c cos q.

Hence (3) is correct answer.