Question
Quantitative Aptitude Question on Algebra
x+62−x−62=22.
Find x.
Step 1 : Let x+62=a and x−62=b
The equation becomes:
a−b=22.(1)
Square both sides:
(a−b)2=(22)2.
Simplify:
a2−2ab+b2=8.(2)
Step 2 : Express a2 and b2 in terms of x
From the definitions:
a2=x+62,b2=x−62.
Add a2+b2:
a2+b2=(x+62)+(x−62)=2x.(3)
Subtract a2−b2:
a2−b2=(x+62)−(x−62)=122.(4)
Step 3 : Substitute into Equation (2)
From Equation (2):
a2+b2−2ab=8.
Substitute a2+b2=2x:
2x−2ab=8.
Solve for ab:
ab=22x−8=x−4.(5)
Step 4 : Solve for a+b using (a−b)(a+b)=a2−b2
From Equation (1), a−b=22, and from Equation (4), a2−b2=122:
(a−b)(a+b)=a2−b2.
Substitute:
(22)(a+b)=122.
Simplify:
a+b=6.(6)
Step 5 : Solve for a and b
From the equations:
a−b=22,a+b=6,
add the two equations:
2a=6+22.
Solve for a:
a=3+2.
Subtract the two equations:
2b=6−22.
Solve for b:
b=3−2.
Step 6 : Use a2=x+62 to find x
Substitute a=3+2 into a2=x+62:
(3+2)2=x+62.
Expand a2:
a2=9+62+2=11+62.
Substitute:
11+62=x+62.
Solve for x:
x=11.
Final Answer:
x=11.