Solveeit Logo

Question

Quantitative Aptitude Question on Algebra

x+62x62=22.\sqrt{x + 6\sqrt{2}} - \sqrt{x - 6\sqrt{2}} = 2\sqrt{2}.
Find xx.

Answer

Step 1 : Let x+62=a\sqrt{x + 6\sqrt{2}} = a and x62=b\sqrt{x - 6\sqrt{2}} = b

The equation becomes:
ab=22.(1)a - b = 2\sqrt{2}. \quad \text{(1)}

Square both sides:
(ab)2=(22)2.(a - b)^2 = (2\sqrt{2})^2.

Simplify:
a22ab+b2=8.(2)a^2 - 2ab + b^2 = 8. \quad \text{(2)}

Step 2 : Express a2a^2 and b2b^2 in terms of xx

From the definitions:
a2=x+62,b2=x62.a^2 = x + 6\sqrt{2}, \quad b^2 = x - 6\sqrt{2}.

Add a2+b2a^2 + b^2:
a2+b2=(x+62)+(x62)=2x.(3)a^2 + b^2 = (x + 6\sqrt{2}) + (x - 6\sqrt{2}) = 2x. \quad \text{(3)}

Subtract a2b2a^2 - b^2:
a2b2=(x+62)(x62)=122.(4)a^2 - b^2 = (x + 6\sqrt{2}) - (x - 6\sqrt{2}) = 12\sqrt{2}. \quad \text{(4)}

Step 3 : Substitute into Equation (2)

From Equation (2):
a2+b22ab=8.a^2 + b^2 - 2ab = 8.

Substitute a2+b2=2xa^2 + b^2 = 2x:
2x2ab=8.2x - 2ab = 8.

Solve for abab:
ab=2x82=x4.(5)ab = \frac{2x - 8}{2} = x - 4. \quad \text{(5)}

Step 4 : Solve for a+ba + b using (ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2

From Equation (1), ab=22a - b = 2\sqrt{2}, and from Equation (4), a2b2=122a^2 - b^2 = 12\sqrt{2}:
(ab)(a+b)=a2b2.(a - b)(a + b) = a^2 - b^2.

Substitute:
(22)(a+b)=122.(2\sqrt{2})(a + b) = 12\sqrt{2}.

Simplify:
a+b=6.(6)a + b = 6. \quad \text{(6)}

Step 5 : Solve for aa and bb

From the equations:
ab=22,a+b=6,a - b = 2\sqrt{2}, \quad a + b = 6,

add the two equations:
2a=6+22.2a = 6 + 2\sqrt{2}.

Solve for aa:
a=3+2.a = 3 + \sqrt{2}.

Subtract the two equations:
2b=622.2b = 6 - 2\sqrt{2}.

Solve for bb:
b=32.b = 3 - \sqrt{2}.

Step 6 : Use a2=x+62a^2 = x + 6\sqrt{2} to find xx

Substitute a=3+2a = 3 + \sqrt{2} into a2=x+62a^2 = x + 6\sqrt{2}:
(3+2)2=x+62.(3 + \sqrt{2})^2 = x + 6\sqrt{2}.

Expand a2a^2:
a2=9+62+2=11+62.a^2 = 9 + 6\sqrt{2} + 2 = 11 + 6\sqrt{2}.

Substitute:
11+62=x+62.11 + 6\sqrt{2} = x + 6\sqrt{2}.

Solve for xx:
x=11.x = 11.

Final Answer:
x=11.x = 11.