Solveeit Logo

Question

Question: If $\vec{a}+\vec{b}+\vec{c}=0$, $|\vec{a}|=3$, $|\vec{b}|=5$, $|\vec{c}|=7$, then the angle between ...

If a+b+c=0\vec{a}+\vec{b}+\vec{c}=0, a=3|\vec{a}|=3, b=5|\vec{b}|=5, c=7|\vec{c}|=7, then the angle between a\vec{a} & b\vec{b} is :

A

π/6\pi/6

B

2π/32\pi/3

C

5π/35\pi/3

D

π/3\pi/3

Answer

π/3\pi/3

Explanation

Solution

Given a+b+c=0\vec{a}+\vec{b}+\vec{c}=0, which implies a+b=c\vec{a}+\vec{b} = -\vec{c}.

Squaring both sides (taking dot product with itself): a+b2=c2|\vec{a}+\vec{b}|^2 = |-\vec{c}|^2 a2+b2+2ab=c2|\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b} = |\vec{c}|^2

Substitute given magnitudes a=3,b=5,c=7|\vec{a}|=3, |\vec{b}|=5, |\vec{c}|=7: 32+52+2ab=723^2 + 5^2 + 2\vec{a} \cdot \vec{b} = 7^2 9+25+2ab=499 + 25 + 2\vec{a} \cdot \vec{b} = 49 34+2ab=4934 + 2\vec{a} \cdot \vec{b} = 49 2ab=152\vec{a} \cdot \vec{b} = 15 ab=152\vec{a} \cdot \vec{b} = \frac{15}{2}

Using the dot product formula ab=abcosθ\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos\theta: 152=(3)(5)cosθ\frac{15}{2} = (3)(5) \cos\theta 152=15cosθ\frac{15}{2} = 15 \cos\theta cosθ=12\cos\theta = \frac{1}{2} θ=π3\theta = \frac{\pi}{3}