Question
Question: If $\vec{a}+\vec{b}+\vec{c}=0$, $|\vec{a}|=3$, $|\vec{b}|=5$, $|\vec{c}|=7$, then the angle between ...
If a+b+c=0, ∣a∣=3, ∣b∣=5, ∣c∣=7, then the angle between a & b is :

A
π/6
B
2π/3
C
5π/3
D
π/3
Answer
π/3
Explanation
Solution
Given a+b+c=0, which implies a+b=−c.
Squaring both sides (taking dot product with itself): ∣a+b∣2=∣−c∣2 ∣a∣2+∣b∣2+2a⋅b=∣c∣2
Substitute given magnitudes ∣a∣=3,∣b∣=5,∣c∣=7: 32+52+2a⋅b=72 9+25+2a⋅b=49 34+2a⋅b=49 2a⋅b=15 a⋅b=215
Using the dot product formula a⋅b=∣a∣∣b∣cosθ: 215=(3)(5)cosθ 215=15cosθ cosθ=21 θ=3π