Solveeit Logo

Question

Question: Space between two concentric spheres of radii \(\mathrm { r } _ { 1 }\) \(\mathrm { r } _ { 1 }\)and...

Space between two concentric spheres of radii r1\mathrm { r } _ { 1 } r1\mathrm { r } _ { 1 }and ,such that r1\mathrm { r } _ { 1 } < r2\mathrm { r } _ { 2 } , is filled with a material of resistivity ρ\rho . Find the resistance between inner and outer surface of the material.

A

r1r2ρ2\frac { \mathrm { r } _ { 1 } } { \mathrm { r } _ { 2 } } \frac { \rho } { 2 }

B

r2r1r1r2ρ4π\frac { \mathrm { r } _ { 2 } - \mathrm { r } _ { 1 } } { \mathrm { r } _ { 1 } \mathrm { r } _ { 2 } } \frac { \rho } { 4 \pi }

C

r1r2r2r1ρ4π\frac { \mathrm { r } _ { 1 } \mathrm { r } _ { 2 } } { \mathrm { r } _ { 2 } - \mathrm { r } _ { 1 } } \frac { \rho } { 4 \pi }

D

None of these

Answer

r2r1r1r2ρ4π\frac { \mathrm { r } _ { 2 } - \mathrm { r } _ { 1 } } { \mathrm { r } _ { 1 } \mathrm { r } _ { 2 } } \frac { \rho } { 4 \pi }

Explanation

Solution

: Since, R=ρlaR=ρdl4πl2\mathrm { R } = \rho \frac { \mathrm { l } } { \mathrm { a } } \therefore \mathrm { R } = \rho \frac { \mathrm { dl } } { 4 \pi \mathrm { l } ^ { 2 } }

(where l is any radius and dl is small element).

Total resistance,

R=ρ4πr1r2dl12=ρ4π[11]r1r2=ρ4π[1r11r2]\mathrm { R } = \frac { \rho } { 4 \pi } \int _ { r _ { 1 } } ^ { r _ { 2 } } \frac { \mathrm { dl } } { 1 ^ { 2 } } = \frac { \rho } { 4 \pi } \left[ - \frac { 1 } { 1 } \right] _ { r _ { 1 } } ^ { r _ { 2 } } = \frac { \rho } { 4 \pi } \left[ \frac { 1 } { r _ { 1 } } - \frac { 1 } { r _ { 2 } } \right]