Solveeit Logo

Question

Question: Solve: $(x^{2} + y^{2})dx + xy(d(x+y)) = 0$...

Solve: (x2+y2)dx+xy(d(x+y))=0(x^{2} + y^{2})dx + xy(d(x+y)) = 0

Answer

ln(x2(x2+xy+2y2))+27arctan(2x+yy7)=C\ln(x^2(x^2+xy+2y^2)) + \frac{2}{\sqrt{7}}\arctan\left(\frac{2x+y}{y\sqrt{7}}\right) = C

Explanation

Solution

The given differential equation is (x2+y2)dx+xy(d(x+y))=0(x^{2} + y^{2})dx + xy(d(x+y)) = 0.

First, expand d(x+y)d(x+y) as dx+dydx+dy: (x2+y2)dx+xy(dx+dy)=0(x^{2} + y^{2})dx + xy(dx + dy) = 0 (x2+y2)dx+xydx+xydy=0(x^{2} + y^{2})dx + xydx + xydy = 0 (x2+xy+y2)dx+xydy=0(x^{2} + xy + y^{2})dx + xydy = 0

This is a homogeneous differential equation because both M(x,y)=x2+xy+y2M(x,y) = x^2+xy+y^2 and N(x,y)=xyN(x,y) = xy are homogeneous functions of degree 2.

To solve a homogeneous differential equation, we can use the substitution x=vyx = vy. Then, dx=vdy+ydvdx = vdy + ydv.

Substitute x=vyx = vy and dx=vdy+ydvdx = vdy + ydv into the equation: ((vy)2+(vy)y+y2)(vdy+ydv)+(vy)ydy=0((vy)^2 + (vy)y + y^2)(vdy + ydv) + (vy)y dy = 0 (v2y2+vy2+y2)(vdy+ydv)+vy2dy=0(v^2y^2 + vy^2 + y^2)(vdy + ydv) + vy^2 dy = 0 Factor out y2y^2: y2(v2+v+1)(vdy+ydv)+vy2dy=0y^2(v^2 + v + 1)(vdy + ydv) + vy^2 dy = 0 Divide by y2y^2 (assuming y0y \neq 0): (v2+v+1)(vdy+ydv)+vdy=0(v^2 + v + 1)(vdy + ydv) + vdy = 0 Distribute the terms: v(v2+v+1)dy+y(v2+v+1)dv+vdy=0v(v^2 + v + 1)dy + y(v^2 + v + 1)dv + vdy = 0 (v3+v2+v)dy+y(v2+v+1)dv+vdy=0(v^3 + v^2 + v)dy + y(v^2 + v + 1)dv + vdy = 0 Combine terms with dydy: (v3+v2+v+v)dy+y(v2+v+1)dv=0(v^3 + v^2 + v + v)dy + y(v^2 + v + 1)dv = 0 (v3+v2+2v)dy+y(v2+v+1)dv=0(v^3 + v^2 + 2v)dy + y(v^2 + v + 1)dv = 0 v(v2+v+2)dy+y(v2+v+1)dv=0v(v^2 + v + 2)dy + y(v^2 + v + 1)dv = 0

Separate the variables: dyy=v2+v+1v(v2+v+2)dv\frac{dy}{y} = - \frac{v^2 + v + 1}{v(v^2 + v + 2)}dv

Integrate both sides: dyy=v2+v+1v(v2+v+2)dv\int \frac{dy}{y} = - \int \frac{v^2 + v + 1}{v(v^2 + v + 2)}dv

For the integral on the right-hand side, use partial fraction decomposition: Let v2+v+1v(v2+v+2)=Av+Bv+Cv2+v+2\frac{v^2 + v + 1}{v(v^2 + v + 2)} = \frac{A}{v} + \frac{Bv + C}{v^2 + v + 2} Multiply by v(v2+v+2)v(v^2 + v + 2): v2+v+1=A(v2+v+2)+(Bv+C)vv^2 + v + 1 = A(v^2 + v + 2) + (Bv + C)v v2+v+1=Av2+Av+2A+Bv2+Cvv^2 + v + 1 = Av^2 + Av + 2A + Bv^2 + Cv v2+v+1=(A+B)v2+(A+C)v+2Av^2 + v + 1 = (A+B)v^2 + (A+C)v + 2A

Comparing coefficients:

  1. 2A=1    A=1/22A = 1 \implies A = 1/2
  2. A+C=1    1/2+C=1    C=1/2A+C = 1 \implies 1/2 + C = 1 \implies C = 1/2
  3. A+B=1    1/2+B=1    B=1/2A+B = 1 \implies 1/2 + B = 1 \implies B = 1/2

So, the integrand becomes: 1/2v+1/2v+1/2v2+v+2=12v+v+12(v2+v+2)\frac{1/2}{v} + \frac{1/2 v + 1/2}{v^2 + v + 2} = \frac{1}{2v} + \frac{v+1}{2(v^2 + v + 2)}

Now, integrate: lny=(12v+v+12(v2+v+2))dv\ln|y| = - \int \left( \frac{1}{2v} + \frac{v+1}{2(v^2 + v + 2)} \right) dv lny=121vdv12v+1v2+v+2dv\ln|y| = - \frac{1}{2} \int \frac{1}{v} dv - \frac{1}{2} \int \frac{v+1}{v^2 + v + 2} dv

For the second integral, notice that the derivative of the denominator v2+v+2v^2+v+2 is 2v+12v+1. We can rewrite the numerator v+1v+1 as 12(2v+2)=12(2v+1+1)\frac{1}{2}(2v+2) = \frac{1}{2}(2v+1+1). So, v+1v2+v+2dv=12(2v+1)+12v2+v+2dv=122v+1v2+v+2dv+121v2+v+2dv\int \frac{v+1}{v^2 + v + 2} dv = \int \frac{\frac{1}{2}(2v+1) + \frac{1}{2}}{v^2 + v + 2} dv = \frac{1}{2} \int \frac{2v+1}{v^2 + v + 2} dv + \frac{1}{2} \int \frac{1}{v^2 + v + 2} dv

The first part of this integral is 12lnv2+v+2\frac{1}{2}\ln|v^2+v+2|. For the second part, complete the square in the denominator: v2+v+2=v2+v+(12)2(12)2+2=(v+12)2+74v^2 + v + 2 = v^2 + v + (\frac{1}{2})^2 - (\frac{1}{2})^2 + 2 = (v + \frac{1}{2})^2 + \frac{7}{4} So, 121(v+12)2+(72)2dv=12172arctan(v+1272)=17arctan(2v+17)\frac{1}{2} \int \frac{1}{(v + \frac{1}{2})^2 + (\frac{\sqrt{7}}{2})^2} dv = \frac{1}{2} \cdot \frac{1}{\frac{\sqrt{7}}{2}} \arctan\left(\frac{v + \frac{1}{2}}{\frac{\sqrt{7}}{2}}\right) = \frac{1}{\sqrt{7}} \arctan\left(\frac{2v+1}{\sqrt{7}}\right)

Putting it all together: lny=12lnv12[12lnv2+v+2+17arctan(2v+17)]+C1\ln|y| = -\frac{1}{2}\ln|v| - \frac{1}{2} \left[ \frac{1}{2}\ln|v^2+v+2| + \frac{1}{\sqrt{7}} \arctan\left(\frac{2v+1}{\sqrt{7}}\right) \right] + C_1 lny=12lnv14lnv2+v+2127arctan(2v+17)+C1\ln|y| = -\frac{1}{2}\ln|v| - \frac{1}{4}\ln|v^2+v+2| - \frac{1}{2\sqrt{7}}\arctan\left(\frac{2v+1}{\sqrt{7}}\right) + C_1

Multiply by 4: 4lny=2lnvlnv2+v+227arctan(2v+17)+4C14\ln|y| = -2\ln|v| - \ln|v^2+v+2| - \frac{2}{\sqrt{7}}\arctan\left(\frac{2v+1}{\sqrt{7}}\right) + 4C_1 ln(y4)=ln(v2)+ln((v2+v+2)1)27arctan(2v+17)+C2\ln(y^4) = \ln(v^{-2}) + \ln((v^2+v+2)^{-1}) - \frac{2}{\sqrt{7}}\arctan\left(\frac{2v+1}{\sqrt{7}}\right) + C_2 ln(y4)=ln(1v2(v2+v+2))27arctan(2v+17)+C2\ln(y^4) = \ln\left(\frac{1}{v^2(v^2+v+2)}\right) - \frac{2}{\sqrt{7}}\arctan\left(\frac{2v+1}{\sqrt{7}}\right) + C_2 ln(y4v2(v2+v+2))=C227arctan(2v+17)\ln(y^4 v^2 (v^2+v+2)) = C_2 - \frac{2}{\sqrt{7}}\arctan\left(\frac{2v+1}{\sqrt{7}}\right)

Now substitute back v=x/yv = x/y: v2=x2/y2v^2 = x^2/y^2 v2+v+2=x2/y2+x/y+2=(x2+xy+2y2)/y2v^2+v+2 = x^2/y^2 + x/y + 2 = (x^2+xy+2y^2)/y^2 y4(x2y2)(x2+xy+2y2y2)=x2(x2+xy+2y2)y^4 \left(\frac{x^2}{y^2}\right) \left(\frac{x^2+xy+2y^2}{y^2}\right) = x^2(x^2+xy+2y^2)

So the solution becomes: ln(x2(x2+xy+2y2))=C27arctan(2(x/y)+17)\ln(x^2(x^2+xy+2y^2)) = C - \frac{2}{\sqrt{7}}\arctan\left(\frac{2(x/y)+1}{\sqrt{7}}\right) ln(x2(x2+xy+2y2))=C27arctan(2x+yy7)\ln(x^2(x^2+xy+2y^2)) = C - \frac{2}{\sqrt{7}}\arctan\left(\frac{2x+y}{y\sqrt{7}}\right)

The final answer is ln(x2(x2+xy+2y2))+27arctan(2x+yy7)=C\boxed{\ln(x^2(x^2+xy+2y^2)) + \frac{2}{\sqrt{7}}\arctan\left(\frac{2x+y}{y\sqrt{7}}\right) = C}.