Solveeit Logo

Question

Question: Solve: $(x^2 + 3x + 1)(x^2 + 3x - 3) \geq 5$...

Solve: (x2+3x+1)(x2+3x3)5(x^2 + 3x + 1)(x^2 + 3x - 3) \geq 5

A

(,4][2,1][0,)(-\infty, -4] \cup [-2, -1] \cup [0, \infty)

B

(,4][2,0][1,)(-\infty, -4] \cup [-2,0] \cup [1, \infty)

C

(,4][2,1][1,)(-\infty, -4] \cup [-2, -1] \cup [1, \infty)

D

None of these

Answer

(,4][2,1][1,)(-\infty, -4] \cup [-2, -1] \cup [1, \infty)

Explanation

Solution

Let y=x2+3xy = x^2 + 3x. The inequality becomes (y+1)(y3)5(y+1)(y-3) \geq 5, which simplifies to y22y80y^2 - 2y - 8 \geq 0. Factoring gives (y4)(y+2)0(y-4)(y+2) \geq 0. This holds when y2y \leq -2 or y4y \geq 4.

Case 1: x2+3x2    x2+3x+20    (x+1)(x+2)0x^2 + 3x \leq -2 \implies x^2 + 3x + 2 \leq 0 \implies (x+1)(x+2) \leq 0. The roots are -2 and -1. The solution is 2x1-2 \leq x \leq -1.

Case 2: x2+3x4    x2+3x40    (x+4)(x1)0x^2 + 3x \geq 4 \implies x^2 + 3x - 4 \geq 0 \implies (x+4)(x-1) \geq 0. The roots are -4 and 1. The solution is x4x \leq -4 or x1x \geq 1.

The total solution is the union of the solutions from Case 1 and Case 2: (,4][2,1][1,)(-\infty, -4] \cup [-2, -1] \cup [1, \infty).