Solveeit Logo

Question

Question: Solve (x + y)<sup>2</sup>\(\frac{dy}{dx}\) = a<sup>2</sup>...

Solve (x + y)2dydx\frac{dy}{dx} = a2

A

y = a tan–1(x+ya)\left( \frac{x + y}{a} \right) + C

B

y = a tan–1(x+ya)\left( \frac{x + y}{a} \right) – C

C

y = a tan–1(xya)\left( \frac{x–y}{a} \right) + C

D

None

Answer

y = a tan–1(x+ya)\left( \frac{x + y}{a} \right) – C

Explanation

Solution

(x + y)2 dydx\frac{dy}{dx} = a2 ... (i)

Put x + y = t Ž 1 + dydx\frac{dy}{dx} = dtdx\frac{dt}{dx}

Ž dydx\frac{dy}{dx} = (dtdx1)\left( \frac{dt}{dx} - 1 \right)

\Equation (i) reduces to,

t2 {dtdx1}\left\{ \frac{dt}{dx} - 1 \right\} = a2 Ž t2 dtdx\frac{dt}{dx} = a2 + t2,

Separating the variable and integrating.

dx\int_{}^{}{dx} = t2a2+t2\int_{}^{}\frac{t^{2}}{a^{2} + t^{2}}dt = (1a2a2+t2)\int_{}^{}\left( 1 - \frac{a^{2}}{a^{2} + t^{2}} \right)dt

\ x = t – a tan–1 (ta)\left( \frac{t}{a} \right) + c

Ž x = x + y – a tan–1 (x+ya)\left( \frac{x + y}{a} \right) + c

Ž y = a tan–1 (x+ya)\left( \frac{x + y}{a} \right) – c,

Which is the required general solution.