Solveeit Logo

Question

Question: Solve using the double angle understanding? \(\cos 6x + \cos 4x + \cos 2x = 0\)...

Solve using the double angle understanding? cos6x+cos4x+cos2x=0\cos 6x + \cos 4x + \cos 2x = 0

Explanation

Solution

here we are asked to solve the given equation which has trigonometric functions. Also, we are asked to use the double angle concept. As we can see that the given equation contains only cosine function we will use the double formula of cosine functions that is cos(A+B)=cosAcosBsinAsinB\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B and cos(AB)=cosAcosB+sinAsinB\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B by modulating the angle of these formulae some formulae are derived those formulae are used in the problem to solve the given equation.
Formula to be used:
a) cosa+cosb=2cos(a+b2)cos(ab2)\cos a + \cos b = 2\cos \left( {\dfrac{{a + b}}{2}} \right)\cos \left( {\dfrac{{a - b}}{2}} \right)
b) When cosx=cosθ\cos x = \cos \theta then the general solution is given by x=2nπ±θx = 2n\pi \pm \theta , where θ(0,π]\theta \in \left( {0,\pi } \right]

Complete answer:
The given equation is cos6x+cos4x+cos2x=0\cos 6x + \cos 4x + \cos 2x = 0and we need to solve it (i.e. we need to calculate the solutions for the given trigonometric equation).
Let us number the given equation cos6x+cos4x+cos2x=0\cos 6x + \cos 4x + \cos 2x = 0as (1)\left( 1 \right)
Let us consider cos6x+cos2x\cos 6x + \cos 2x
Now, we shall apply the formula cosa+cosb=2cos(a+b2)cos(ab2)\cos a + \cos b = 2\cos \left( {\dfrac{{a + b}}{2}} \right)\cos \left( {\dfrac{{a - b}}{2}} \right)
Thus, we have cos6x+cos2x\cos 6x + \cos 2x =2cos(6x+2x2)cos(6x2x2) = 2\cos \left( {\dfrac{{6x + 2x}}{2}} \right)\cos \left( {\dfrac{{6x - 2x}}{2}} \right)
=2cos(8x2)cos(4x2)= 2\cos \left( {\dfrac{{8x}}{2}} \right)\cos \left( {\dfrac{{4x}}{2}} \right)
=2cos4xcos2x= 2\cos 4x\cos 2x
Hence, we get cos6x+cos2x\cos 6x + \cos 2x =2cos4xcos2x = 2\cos 4x\cos 2x……….(2)\left( 2 \right)
Now, we shall substitute the equation (2)\left( 2 \right)in the equation (1)\left( 1 \right)
Thus, we will get cos6x+cos4x+cos2x=0\cos 6x + \cos 4x + \cos 2x = 0
cos4x+2cos4xcos2x=0\Rightarrow \cos 4x + 2\cos 4x\cos 2x = 0
cos4x(1+2cos2x)=0\Rightarrow \cos 4x\left( {1 + 2\cos 2x} \right) = 0
Hence in the above equation, we can note that either cos4x=0\cos 4x = 0 or 1+2cos2x=01 + 2\cos 2x = 0 .
We shall consider both cases to find the solution.
Case a:
Let us consider cos4x=0\cos 4x = 0
cos4x=cos90\Rightarrow \cos 4x = \cos 90^\circ (We know that cos90=0\cos 90^\circ = 0 )
cos4x=cosπ2\Rightarrow \cos 4x = \cos \dfrac{\pi }{2}
4x=2nπ±π2\Rightarrow 4x = 2n\pi \pm \dfrac{\pi }{2} (Here we have applied cosx=cosθ\cos x = \cos \theta x=2nπ±θ\Rightarrow x = 2n\pi \pm \theta , where θ(0,π]\theta \in \left( {0,\pi } \right])
x=2nπ4±π2×4\Rightarrow x = \dfrac{{2n\pi }}{4} \pm \dfrac{\pi }{{2 \times 4}}
x=nπ2±π8\Rightarrow x = \dfrac{{n\pi }}{2} \pm \dfrac{\pi }{8}
Thus, we got the solution x=nπ2±π8x = \dfrac{{n\pi }}{2} \pm \dfrac{\pi }{8} when cos4x=0\cos 4x = 0for the given equation.
Case b:
Let us consider 1+2cos2x=01 + 2\cos 2x = 0
2cos2x=1\Rightarrow 2\cos 2x = - 1
cos2x=12\Rightarrow \cos 2x = - \dfrac{1}{2}
cos2x=cos120\Rightarrow \cos 2x = \cos 120^\circ (We know that cos120=12\cos 120^\circ = - \dfrac{1}{2} )
cos2x=cos2π3\Rightarrow \cos 2x = \cos \dfrac{{2\pi }}{3}
2x=2nπ±2π3\Rightarrow 2x = 2n\pi \pm \dfrac{{2\pi }}{3} (Here we have applied cosx=cosθ\cos x = \cos \theta x=2nπ±θ\Rightarrow x = 2n\pi \pm \theta , where θ(0,π]\theta \in \left( {0,\pi } \right])
x=2nπ2±2π3×2\Rightarrow x = \dfrac{{2n\pi }}{2} \pm \dfrac{{2\pi }}{{3 \times 2}}
x=nπ±π3\Rightarrow x = n\pi \pm \dfrac{\pi }{3}
Thus, we got the solution x=nπ±π3x = n\pi \pm \dfrac{\pi }{3} when 1+2cos2x=01 + 2\cos 2x = 0for the given equation.

Note:
Since we are asked to solve the given equation, we have calculated the appropriate solution of the given equation. Also, it is no need to have a single solution for an equation. An equation can contain more than one solution and even no solution can also exist. Here, we can have either x=nπ2±π8x = \dfrac{{n\pi }}{2} \pm \dfrac{\pi }{8}or x=nπ±π3x = n\pi \pm \dfrac{\pi }{3}for the given equation.