Solveeit Logo

Question

Question: Solve this integration: \(\int{{{\sin }^{3}}x{{\cos }^{3}}xdx}\) using proper trigonometric identity...

Solve this integration: sin3xcos3xdx\int{{{\sin }^{3}}x{{\cos }^{3}}xdx} using proper trigonometric identity and formula.

Explanation

Solution

Hint: Multiply and divide the whole relation by 2 and use the trigonometric identity of sin2x=2sinxcosx\sin 2x=2\sin x\cos x to get the given integral in simplified form. Use the trigonometric identity of sin3x\sin 3x, whenever required. It is given as sin3x=3sinx4sin3x\sin 3x=3\sin x-4{{\sin }^{3}}x .

Complete step-by-step answer:

Let us suppose the value of the given integral be I. So, we get equation as
I=sin3xcos3xdxI=\int{{{\sin }^{3}}x{{\cos }^{3}}xdx} …………………………(i)
Now, we can rewrite the equation (i) as
I=(sinxcosx)3dxI=\int{{{\left( \sin x\cos x \right)}^{3}}dx}
Multiply and divide by 2 inside the bracket of RHS part of the above equation, we get
I=(2sinxcosx)3(2)3dxI=\int{\dfrac{{{\left( 2\sin x\cos x \right)}^{3}}}{{{\left( 2 \right)}^{3}}}dx}
I=18(2sinxcosx)3dx\Rightarrow I=\dfrac{1}{8}\int{{{\left( 2\sin x\cos x \right)}^{3}}dx} ………………………(ii)
Now, we know the trigonometric identity of sin2x\sin 2x is given as
sin2x=2sinxcosx\sin 2x=2\sin x\cos x ……………………………….(iii)
So, we can replace 2sinxcosx2\sin x\cos x from the equation (iii) by sin2x\sin 2x in the expression of equation (ii).
So, we get value of I as
I=18(sin2x)3dxI=\dfrac{1}{8}\int{{{\left( \sin 2x \right)}^{3}}dx}
I=18sin32xdxI=\dfrac{1}{8}\int{{{\sin }^{3}}2xdx} …...............................(iv)
As we know trigonometric identity of sin3x\sin 3x can be given as
sin3x=3sinx4sin3x\sin 3x=3\sin x-4{{\sin }^{3}}x ………………………..(v)
Now, put x=2xx=2x to the equation (v), so, we get
sin6x=3sin2x4sin32x\sin 6x=3\sin 2x-4{{\sin }^{3}}2x
Now, we can get value of sin32x{{\sin }^{3}}2x as
4sin32x=3sin2xsin6x4{{\sin }^{3}}2x=3\sin 2x-\sin 6x
sin32x=34sin2x14sin6x\Rightarrow {{\sin }^{3}}2x=\dfrac{3}{4}\sin 2x-\dfrac{1}{4}\sin 6x ………………………(vi)
Hence, using equation (vi), we can replace sin32x{{\sin }^{3}}2x by 34sin2x14sin6x\dfrac{3}{4}\sin 2x-\dfrac{1}{4}\sin 6x . Hence, we get value of I as
I=18(34sin2x14sin6x)dxI=\dfrac{1}{8}\int{\left( \dfrac{3}{4}\sin 2x-\dfrac{1}{4}\sin 6x \right)dx}
I=332sin2x132sin6xdxI=\dfrac{3}{32}\int{\sin 2x-\dfrac{1}{32}\int{\sin 6x}dx}
Now, we know sinxdx=cosx\int{\sin xdx=-\cos x}
So, we get value of I as
I=332(cos2x2)132(cos6x6)+cI=\dfrac{3}{32}\left( \dfrac{-\cos 2x}{2} \right)-\dfrac{1}{32}\left( \dfrac{-\cos 6x}{6} \right)+c
I=3cos2x64+cos6x192+cI=\dfrac{-3\cos 2x}{64}+\dfrac{\cos 6x}{192}+c
Hence, we get sin3xcos3xdx=3cos2x64+cos6x192+c\int{{{\sin }^{3}}x{{\cos }^{3}}xdx}=\dfrac{-3\cos 2x}{64}+\dfrac{\cos 6x}{192}+c

Note: Another approach for the problem would be that we can replace cos3x{{\cos }^{3}}x and sin3x{{\sin }^{3}}x by relations :-
sin3x=3sinx4sin3x{{\sin }^{3}}x=3\sin x-4{{\sin }^{3}}x
cos3x=4cos3x3cosx{{\cos }^{3}}x=4{{\cos }^{3}}x-3\cos x
And hence, multiply them and simplify it.
Always try to convert sinmxcosnxdx\int{{{\sin }^{^{m}}}x{{\cos }^{n}}xdx} by sin2x=2sinxcosx\sin 2x=2\sin x\cos x , if m and n are odd numbers and same, otherwise suppose tan2x=t{{\tan }^{2}}x=t .