Solveeit Logo

Question

Question: Solve this \[2{{\sin }^{2}}\left( x \right)-{{\sin }^{2}}\left( 2x \right)={{\cos }^{2}}\left( 2x \r...

Solve this 2sin2(x)sin2(2x)=cos2(2x)2{{\sin }^{2}}\left( x \right)-{{\sin }^{2}}\left( 2x \right)={{\cos }^{2}}\left( 2x \right). It should be: x=π4+kπx=\dfrac{\pi }{4}+k\pi and x=3π4+kπx=\dfrac{3\pi }{4}+k\pi

Explanation

Solution

In order to find the general solution of the given trigonometric equation that is 2sin2(x)sin2(2x)=cos2(2x)2{{\sin }^{2}}\left( x \right)-{{\sin }^{2}}\left( 2x \right)={{\cos }^{2}}\left( 2x \right), simplify this equation with the help of trigonometric property of sine and cosine that is sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1. After that, take the square root of both the sides of the equation and you’ll get two values of sin(x)\sin \left( x \right). Now consider two cases for these values and find the value of xx in each case with the help of the trigonometric property of sine and sine inverse that is sin1(sin(x))=x{{\sin }^{-1}}\left( \sin \left( x \right) \right)=x

Complete step by step solution:
Given equation is as follows:
2sin2(x)sin2(2x)=cos2(2x)2{{\sin }^{2}}\left( x \right)-{{\sin }^{2}}\left( 2x \right)={{\cos }^{2}}\left( 2x \right)
Add sin2(2x){{\sin }^{2}}\left( 2x \right) both the sides of the above equation we get:
2sin2(x)=sin2(2x)+cos2(2x)\Rightarrow 2{{\sin }^{2}}\left( x \right)={{\sin }^{2}}\left( 2x \right)+{{\cos }^{2}}\left( 2x \right)
Apply the trigonometric property of sine and cosine that is sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1in the above equation we get:
2sin2(x)=1\Rightarrow 2{{\sin }^{2}}\left( x \right)=1
Now after dividing 2 both the sides from the above equation, we get:
sin2(x)=12\Rightarrow {{\sin }^{2}}\left( x \right)=\dfrac{1}{2}
Taking square root on both the sides we get:
sin(x)=±12\Rightarrow \sin \left( x \right)=\pm \dfrac{1}{\sqrt{2}}
This implies there are two values of sin(x)\sin \left( x \right) for which 2sin2(x)sin2(2x)=cos2(2x)2{{\sin }^{2}}\left( x \right)-{{\sin }^{2}}\left( 2x \right)={{\cos }^{2}}\left( 2x \right) this equation is satisfied. So, consider two cases to find the value of xx in each case.
Case 1: sin(x)=12\sin \left( x \right)=\dfrac{1}{\sqrt{2}} that is Positive value;
Take inverse sine inverse both the sides we get:
sin1(sin(x))=sin1(12)\Rightarrow {{\sin }^{-1}}\left( \sin \left( x \right) \right)={{\sin }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)
Apply the trigonometric property of sine and sine inverse that is sin1(sin(x))=x{{\sin }^{-1}}\left( \sin \left( x \right) \right)=x in the above equation we get:
x=sin1(12)\Rightarrow x={{\sin }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)
We know that value of sin1(12)=π4{{\sin }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)=\dfrac{\pi }{4}. Therefore, we can write
x=π4+kπ\Rightarrow x=\dfrac{\pi }{4}+k\pi where kk is even.
Case 2: sin(x)=12\sin \left( x \right)=-\dfrac{1}{\sqrt{2}} that is negative value;
Take inverse sine inverse both the sides, we get:
sin1(sin(x))=sin1(12)\Rightarrow {{\sin }^{-1}}\left( \sin \left( x \right) \right)={{\sin }^{-1}}\left( -\dfrac{1}{\sqrt{2}} \right)
Apply the trigonometric property of sine and sine inverse that is sin1(sin(x))=x{{\sin }^{-1}}\left( \sin \left( x \right) \right)=x in the above equation we get:
x=sin1(12)\Rightarrow x={{\sin }^{-1}}\left( -\dfrac{1}{\sqrt{2}} \right)
We know that value of sin1(12)=3π4{{\sin }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)=\dfrac{3\pi }{4}. Therefore, we can write
x=3π4+kπ\Rightarrow x=\dfrac{3\pi }{4}+k\pi where kk is odd.
Therefore, General solution of the equation 2sin2(x)sin2(2x)=cos2(2x)2{{\sin }^{2}}\left( x \right)-{{\sin }^{2}}\left( 2x \right)={{\cos }^{2}}\left( 2x \right) are x=π4+kπx=\dfrac{\pi }{4}+k\pi when kk is even and x=3π4+kπx=\dfrac{3\pi }{4}+k\pi when kk is odd.

Note:
Students can go wrong while taking the square root of sin2(x)=12{{\sin }^{2}}\left( x \right)=\dfrac{1}{2} and take only positive value as the answer and ignoring the negative value that is instead of writing this sin(x)=±12\sin \left( x \right)=\pm \dfrac{1}{\sqrt{2}}as the square root of sin2(x)=12{{\sin }^{2}}\left( x \right)=\dfrac{1}{2}, some students write this sin(x)=12\sin \left( x \right)=\dfrac{1}{\sqrt{2}}only which is partially correct but leads to the incomplete answer. Key point is to remember whenever taking square roots consider both positive and negative values, especially when you are finding a general solution to some question.