Solveeit Logo

Question

Question: Solve the trigonometric equation \(\tan \left( 5\theta \right)=\cot \left( 2\theta \right)\)....

Solve the trigonometric equation tan(5θ)=cot(2θ)\tan \left( 5\theta \right)=\cot \left( 2\theta \right).

Explanation

Solution

Hint: We will use the trigonometric formula given by cotθ=tan(π2θ)\cot \theta =\tan \left( \dfrac{\pi }{2}-\theta \right) to convert cotangent and tangent. We will also apply the formula tan(x)=tan(y)\tan \left( x \right)=\tan \left( y \right) results into x=nπ+yx=n\pi +y so that we can find the value of the angle which is required here.

Complete step-by-step answer:
We will first consider the equation tan(5θ)=cot(2θ)\tan \left( 5\theta \right)=\cot \left( 2\theta \right) as (i). Now, as we know that cotθ=tan(π2θ)\cot \theta =\tan \left( \dfrac{\pi }{2}-\theta \right) as the value of tangent is opposite to cotangent when it is in the first quadrant. Also, in the first quadrant the value of tan is positive. . Numerically we can write it as cot(2θ)=tan(π22θ)\cot \left( 2\theta \right)=\tan \left( \dfrac{\pi }{2}-2\theta \right). Now we will substitute this value in equation (i). So we get tan(5θ)=tan(π22θ)\tan \left( 5\theta \right)=\tan \left( \dfrac{\pi }{2}-2\theta \right).
Now we will proceed after it by the use of the formula given by tan(x)=tan(y)\tan \left( x \right)=\tan \left( y \right) results into x=nπ+yx=n\pi +y. Now, we will apply this formula into the equation tan(5θ)=tan(π22θ)\tan \left( 5\theta \right)=\tan \left( \dfrac{\pi }{2}-2\theta \right). Thus, we get
tan(5θ)=tan(π22θ) 5θ=nπ+π22θ \begin{aligned} & \tan \left( 5\theta \right)=\tan \left( \dfrac{\pi }{2}-2\theta \right) \\\ & \Rightarrow 5\theta =n\pi +\dfrac{\pi }{2}-2\theta \\\ \end{aligned}
Now we will solve the above equation and we will have
5θ=nπ+π22θ 5θ+2θ=π2+nπ 7θ=π2+nπ θ=π14+nπ7 \begin{aligned} & 5\theta =n\pi +\dfrac{\pi }{2}-2\theta \\\ & \Rightarrow 5\theta +2\theta =\dfrac{\pi }{2}+n\pi \\\ & \Rightarrow 7\theta =\dfrac{\pi }{2}+n\pi \\\ & \Rightarrow \theta =\dfrac{\pi }{14}+\dfrac{n\pi }{7} \\\ \end{aligned}
Therefore the required value of the angle θ\theta is given by θ=π14+nπ7\theta =\dfrac{\pi }{14}+\dfrac{n\pi }{7}.
Hence, the value of the trigonometric equation tan(5θ)=cot(2θ)\tan \left( 5\theta \right)=\cot \left( 2\theta \right) is given by θ=π14+nπ7\theta =\dfrac{\pi }{14}+\dfrac{n\pi }{7}.

Note: Alternate method of solving the trigonometric expression tan(5θ)=cot(2θ)\tan \left( 5\theta \right)=\cot \left( 2\theta \right) is given below.
We can write cot(2θ)\cot \left( 2\theta \right) as tan(π22θ)\tan \left( \dfrac{\pi }{2}-2\theta \right). Therefore, we can use this value in the equation tan(5θ)=cot(2θ)\tan \left( 5\theta \right)=\cot \left( 2\theta \right). Therefore we have tan(5θ)=tan(π22θ)\tan \left( 5\theta \right)=\tan \left( \dfrac{\pi }{2}-2\theta \right). Now we can take the term tan(π22θ)\tan \left( \dfrac{\pi }{2}-2\theta \right) to the left side of the equation. Thus we have tan(5θ)tan(π22θ)=0\tan \left( 5\theta \right)-\tan \left( \dfrac{\pi }{2}-2\theta \right)=0. And now we will write tan(5θ)\tan \left( 5\theta \right) as sin5θcos5θ\dfrac{\sin 5\theta }{\cos 5\theta }. We will do the same with the term tan(π22θ)\tan \left( \dfrac{\pi }{2}-2\theta \right) and write it as sin(π22θ)cos(π22θ)\dfrac{\sin \left( \dfrac{\pi }{2}-2\theta \right)}{\cos \left( \dfrac{\pi }{2}-2\theta \right)}. Now we will substitute the values into the trigonometric equation tan(5θ)tan(π22θ)=0\tan \left( 5\theta \right)-\tan \left( \dfrac{\pi }{2}-2\theta \right)=0. Therefore we get a new equation now which is given by sin(5θ)cos(5θ)sin(π22θ)cos(π22θ)=0\dfrac{\sin \left( 5\theta \right)}{\cos \left( 5\theta \right)}-\dfrac{\sin \left( \dfrac{\pi }{2}-2\theta \right)}{\cos \left( \dfrac{\pi }{2}-2\theta \right)}=0. After taking lcm we will have, sin(5θ)cos(π22θ)sin(π22θ)cos(5θ)cos(5θ)cos(π22θ)=0 sin(5θ)cos(π22θ)sin(π22θ)cos(5θ)=0 \begin{aligned} & \dfrac{\sin \left( 5\theta \right)\cos \left( \dfrac{\pi }{2}-2\theta \right)-\sin \left( \dfrac{\pi }{2}-2\theta \right)\cos \left( 5\theta \right)}{\cos \left( 5\theta \right)\cos \left( \dfrac{\pi }{2}-2\theta \right)}=0 \\\ & \Rightarrow \sin \left( 5\theta \right)\cos \left( \dfrac{\pi }{2}-2\theta \right)-\sin \left( \dfrac{\pi }{2}-2\theta \right)\cos \left( 5\theta \right)=0 \\\ \end{aligned}
Now we will use the formula sinAcosBcosAsinB=sin(AB)\sin A\cos B-\cos A\sin B=\sin \left( A-B \right). Thus, now we have that sin(5θ)cos(π22θ)sin(π22θ)cos(5θ)=0 sin(5θ(π22θ))=0 sin(7θπ2)=0 \begin{aligned} & \sin \left( 5\theta \right)\cos \left( \dfrac{\pi }{2}-2\theta \right)-\sin \left( \dfrac{\pi }{2}-2\theta \right)\cos \left( 5\theta \right)=0 \\\ & \Rightarrow \sin \left( 5\theta -\left( \dfrac{\pi }{2}-2\theta \right) \right)=0 \\\ & \Rightarrow \sin \left( 7\theta -\dfrac{\pi }{2} \right)=0 \\\ \end{aligned}
Now as we know that when sinx=0\sin x=0 then x=nπx=n\pi . Therefore, we get sin(7θπ2)=0\sin \left( 7\theta -\dfrac{\pi }{2} \right)=0 resulting into
7θ=nπ+π2 θ=nπ7+π14 \begin{aligned} & 7\theta =n\pi +\dfrac{\pi }{2} \\\ & \Rightarrow \theta =\dfrac{n\pi }{7}+\dfrac{\pi }{14} \\\ \end{aligned}
Hence, the value of the trigonometric equation tan(5θ)=cot(2θ)\tan \left( 5\theta \right)=\cot \left( 2\theta \right) is given by θ=π14+nπ7\theta =\dfrac{\pi }{14}+\dfrac{n\pi }{7}.