Solveeit Logo

Question

Question: Solve the trigonometric equation \[\sin 3x+\cos 2x=0\]....

Solve the trigonometric equation sin3x+cos2x=0\sin 3x+\cos 2x=0.

Explanation

Solution

In this type of question we have to use the concept of trigonometry. Here, we have to use different formulae of trigonometry such as cos(π2θ)=sinθ\cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta , cos(πθ)=cosθ\cos \left( \pi -\theta \right)=-\cos \theta and cosθ=cos(2nπ±θ)\cos \theta =\cos \left( 2n\pi \pm \theta \right). By using these trigonometry formulae we can simplify the given expression to obtain the general solution i.e. to obtain the value of xx.

Complete step-by-step solution:
Now, we have to solve sin3x+cos2x=0\sin 3x+\cos 2x=0.
For this, let us consider,
sin3x+cos2x=0\Rightarrow \sin 3x+\cos 2x=0
cos2x=sin3x\Rightarrow \cos 2x=-\sin 3x
Now, as we know that, cos(π2θ)=sinθ\cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta we can rewrite the above equation as,
cos2x=cos(π23x)\Rightarrow \cos 2x=-\cos \left( \dfrac{\pi }{2}-3x \right)
Here, we can observe that our right hand side is negative of cosine so to make it positive, we will use cos(πθ)=cosθ\cos \left( \pi -\theta \right)=-\cos \theta and hence, we get,
cos2x=cos(π(π23x))\Rightarrow \cos 2x=\cos \left( \pi -\left( \dfrac{\pi }{2}-3x \right) \right)
On simplifying the angle present on right hand side, we get,
cos2x=cos(π2+3x)\Rightarrow \cos 2x=\cos \left( \dfrac{\pi }{2}+3x \right)
We know that, cosθ=cos(2nπ±θ)\cos \theta =\cos \left( 2n\pi \pm \theta \right) hence, we can write,
cos2x=cos(2nπ±(π2+3x))\Rightarrow \cos 2x=\cos \left( 2n\pi \pm \left( \dfrac{\pi }{2}+3x \right) \right)
2x=(2nπ±(π2+3x))\Rightarrow 2x=\left( 2n\pi \pm \left( \dfrac{\pi }{2}+3x \right) \right)
So, we can rewrite the above expression as
2x=2nπ+π2+3x or 2x=2nππ23x\Rightarrow 2x=2n\pi +\dfrac{\pi }{2}+3x\text{ or }2x=2n\pi -\dfrac{\pi }{2}-3x
By simplifying this further we get,

& \Rightarrow 2x-3x=2n\pi +\dfrac{\pi }{2}\text{ or }2x+3x=2n\pi -\dfrac{\pi }{2} \\\ & \Rightarrow -x=2n\pi +\dfrac{\pi }{2}\text{ or 5}x=2n\pi -\dfrac{\pi }{2} \\\ & \Rightarrow x=-2n\pi -\dfrac{\pi }{2}\text{ or 5}x=2n\pi -\dfrac{\pi }{2} \\\ \end{aligned}$$ After simplifying the equation further we get, $$\begin{aligned} & \Rightarrow x=-\dfrac{\pi }{2}\left( 4n+1 \right)\text{ or 5}x=\dfrac{\pi }{2}\left( 4n-1 \right) \\\ & \Rightarrow x=-\dfrac{\pi }{2}\left( 4n+1 \right)\text{ or }x=\dfrac{\pi }{10}\left( 4n-1 \right) \\\ \end{aligned}$$ Hence, the general solution is given by, $$\Rightarrow x=-\dfrac{\pi }{2}\left( 4n+1 \right)\text{ or }\dfrac{\pi }{10}\left( 4n-1 \right)\text{ where }n\in \mathbb{Z}$$ **Thus, on solving the equation $$\sin 3x+\cos 2x=0$$ we get its general solution as $$x=-\dfrac{\pi }{2}\left( 4n+1 \right)\text{ or }\dfrac{\pi }{10}\left( 4n-1 \right)\text{ where }n\in \mathbb{Z}$$.** **Note:** In this type of question students may make mistakes after the step $$\cos 2x=\cos \left( \dfrac{\pi }{2}+3x \right)$$. Students have to take care after this step as direct cancellation will lead to a particular answer that will be $$x=-\dfrac{\pi }{2}$$ and as we have to solve the given equation for all possible values of $$x$$ generalisation is important. So that students have to remember to use the formula $$\cos \theta =\cos \left( 2n\pi \pm \theta \right)$$ which will generalise our final answer in the form of $$n$$ where $$n\in \mathbb{Z}$$