Question
Mathematics Question on Determinants
Solve the system of the following equations
x2+y3+z10=4
x4−y6+z5=1
x6+y9−z20=2
Answer
Let x1=p,y1=q,z1=r.
Then the given system of equations is as follows:
2p+q+10r=4
4p-6q+5r=1
6p+9q-20r=2
This system can be written in the form of AX= B, where
A=2 4 63−69105−20, X=p q rand B=4 1 2
Now,
|A|=2(120-45)-3(-80-30)+10(36+36)
=150+330+720
=1200
Thus, A is non-singular. Therefore, its inverse exists.
Now,
A11=75,A12=110,A13=72
A21=150,A22=−100,A23=0
A31=75,A32=30,A33=−24
∴A-1=∣A∣1adj A
=\frac{1}{1200}$$\begin{vmatrix} 75 &150 &75 \\\ 110&-100 &30 \\\ 72&0 &-24 \end{vmatrix}
Now,
X=A-1B
=\frac{1}{1200}$$\begin{vmatrix} 600\\\ 400\\\ 240 \end{vmatrix}=21 31 51
∴p=21,q=31 and r=51
Hence,x=2,y=3 and z=5