Solveeit Logo

Question

Question: Solve the simultaneous equations $|x+2| +y=5$, $x-|y|=1$...

Solve the simultaneous equations x+2+y=5|x+2| +y=5, xy=1x-|y|=1

Answer

(2, 1)

Explanation

Solution

The deduction x1x \ge 1 from xy=1x-|y|=1 simplifies x+2|x+2| to x+2x+2. Substituting x=1+yx=1+|y| into the first equation leads to x+2+y=5    (1+y)+2+y=5    y+y=2|x+2|+y=5 \implies (1+|y|)+2+y=5 \implies |y|+y=2. For y0y \ge 0, this gives 2y=2    y=12y=2 \implies y=1. For y<0y < 0, it yields 0=20=2 (contradiction). Thus, y=1y=1, and substituting back into x=1+yx=1+|y| gives x=2x=2.