Solveeit Logo

Question

Question: Solve the series \(9 + \dfrac{{16}}{{2!}} + \dfrac{{27}}{{3!}} + \dfrac{{42}}{{4!}} + .....\infty \)...

Solve the series 9+162!+273!+424!+.....9 + \dfrac{{16}}{{2!}} + \dfrac{{27}}{{3!}} + \dfrac{{42}}{{4!}} + .....\infty

  1. 11e411e - 4
  2. 11e611e - 6
  3. 10e+510e + 5
  4. 3e+43e + 4
Explanation

Solution

First we are to deduce the given series in the form of a particular series of sum of terms. Then we are to operate the given series of terms to get the nth{n^{th}} term of the sequence. From the nth{n^{th}} term we can deduce the nth{n^{th}} term of the required sequence. Then, we can obtain the sum of the nth{n^{th}} terms of the sequence to obtain the series of sum of the terms. On calculating we can find the required answer.

Complete step-by-step solution:
The given series is, 9+162!+273!+424!+.....9 + \dfrac{{16}}{{2!}} + \dfrac{{27}}{{3!}} + \dfrac{{42}}{{4!}} + .....\infty .
So, let, S=9+162!+273!+424!+.....S = 9 + \dfrac{{16}}{{2!}} + \dfrac{{27}}{{3!}} + \dfrac{{42}}{{4!}} + .....\infty .
We can write it as,
S=91!+162!+273!+424!+.....\Rightarrow S = \dfrac{9}{{1!}} + \dfrac{{16}}{{2!}} + \dfrac{{27}}{{3!}} + \dfrac{{42}}{{4!}} + .....\infty.
And, let
S1=9+16+27+42+....+tn(1){S_1} = 9 + 16 + 27 + 42 + .... + {t_n} - - - \left( 1 \right)
S1=    9+16+27+42+....+tn(2){S_1} = \;\; 9 + 16 + 27 + 42 + .... + {t_n} - - - \left( 2 \right)
Now, (1)(2)\left( 1 \right) - \left( 2 \right), we get,
0=9+7+11+15+....tn0 = 9 + 7 + 11 + 15 + .... - {t_n}
Adding tn{t_n} on both the sides, we get,
tn=9+7+11+15+....\Rightarrow {t_n} = 9 + 7 + 11 + 15 + ....
tn=9+[7+11+15+....+upto (n1)terms]\Rightarrow {t_n} = 9 + \left[ {7 + 11 + 15 + .... + {\text{upto }}\left( {n - 1} \right){\text{terms}}} \right]
Now, the sum of nn terms of an AP, is n2(2a+(n1)d)\dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right) where, a=a = first term of sequence, d=d = common difference between terms and n=n = number of terms.
Applying the formula of sum of AP, we get,
\Rightarrow {t_n} = 9 + \dfrac{{\left( {n - 1} \right)}}{2}\left\\{ {2\left( 7 \right) + \left( {n - 1 - 1} \right)4} \right\\}
[First term =7 = 7 and Common difference =4 = 4]
\Rightarrow {t_n} = 9 + \dfrac{{\left( {n - 1} \right)}}{2}\left\\{ {14 + \left( {n - 2} \right)4} \right\\}
Opening the brackets,
\Rightarrow {t_n} = 9 + \dfrac{{\left( {n - 1} \right)}}{2}\left\\{ {14 + 4n - 8} \right\\}
Adding up the terms,
\Rightarrow {t_n} = 9 + \dfrac{{\left( {n - 1} \right)}}{2}\left\\{ {6 + 4n} \right\\}
Cancelling the common factors in numerator and denominator, we get,
tn=9+(n1)(2n+3)\Rightarrow {t_n} = 9 + \left( {n - 1} \right)\left( {2n + 3} \right)
So, nth{n^{th}} term of the given series S=9+162!+273!+424!+.....S = 9 + \dfrac{{16}}{{2!}} + \dfrac{{27}}{{3!}} + \dfrac{{42}}{{4!}} + .....\infty is,
Tn=9+(n1)(2n+3)n!{T_n} = \dfrac{{9 + \left( {n - 1} \right)\left( {2n + 3} \right)}}{{n!}}
Opening the brackets and multiplying, we get,
Tn=9+(2n2+n3)n!\Rightarrow {T_n} = \dfrac{{9 + (2{n^2} + n - 3)}}{{n!}}
Tn=2n2+n+6n!\Rightarrow {T_n} = \dfrac{{2{n^2} + n + 6}}{{n!}}
Diving each term in numerator by the denominator, we get,
Tn=2n2n!+nn!+6n!\Rightarrow {T_n} = \dfrac{{2{n^2}}}{{n!}} + \dfrac{n}{{n!}} + \dfrac{6}{{n!}}
We know, n!=n(n1)(n2)(n3).....1=n(n1)!n! = n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right).....1 = n\left( {n - 1} \right)!
So, on applying this, we get,
Tn=2n2n(n1)!+nn(n1)!+6n!\Rightarrow {T_n} = \dfrac{{2{n^2}}}{{n\left( {n - 1} \right)!}} + \dfrac{n}{{n\left( {n - 1} \right)!}} + \dfrac{6}{{n!}}
Tn=2n(n1)!+1(n1)!+6n!\Rightarrow {T_n} = \dfrac{{2n}}{{\left( {n - 1} \right)!}} + \dfrac{1}{{\left( {n - 1} \right)!}} + \dfrac{6}{{n!}}
We can write (2n)\left( {2n} \right) as (2n2+2)\left( {2n - 2 + 2} \right), applying this, we get,
Tn=2n2+2(n1)!+1(n1)!+6n!\Rightarrow {T_n} = \dfrac{{2n - 2 + 2}}{{\left( {n - 1} \right)!}} + \dfrac{1}{{\left( {n - 1} \right)!}} + \dfrac{6}{{n!}}
Tn=2n2(n1)!+2(n1)!+1(n1)!+6n!\Rightarrow {T_n} = \dfrac{{2n - 2}}{{\left( {n - 1} \right)!}} + \dfrac{2}{{\left( {n - 1} \right)!}} + \dfrac{1}{{\left( {n - 1} \right)!}} + \dfrac{6}{{n!}}
Applying the property of factorials again, we get,
Tn=2(n1)(n1)(n2)!+2(n1)!+1(n1)!+6n!\Rightarrow {T_n} = \dfrac{{2\left( {n - 1} \right)}}{{\left( {n - 1} \right)\left( {n - 2} \right)!}} + \dfrac{2}{{\left( {n - 1} \right)!}} + \dfrac{1}{{\left( {n - 1} \right)!}} + \dfrac{6}{{n!}}
Now, simplifying, we get,
Tn=2(n2)!+3(n1)!+6n!\Rightarrow {T_n} = \dfrac{2}{{\left( {n - 2} \right)!}} + \dfrac{3}{{\left( {n - 1} \right)!}} + \dfrac{6}{{n!}}
Now, to find the sum of the series,
S=TnS = \sum {{T_n}}
S=[2(n2)!+3(n1)!+6n!]\Rightarrow S = \sum {\left[ {\dfrac{2}{{\left( {n - 2} \right)!}} + \dfrac{3}{{\left( {n - 1} \right)!}} + \dfrac{6}{{n!}}} \right]}
Simplifying the expression,
S=2(n2)!+3(n1)!+6n!\Rightarrow S = \sum {\dfrac{2}{{\left( {n - 2} \right)!}} + \sum {\dfrac{3}{{\left( {n - 1} \right)!}} + \sum {\dfrac{6}{{n!}}} } }
S=2.1(n2)!+3.1(n1)!+6.1n!\Rightarrow S = 2.\sum {\dfrac{1}{{\left( {n - 2} \right)!}} + 3.\sum {\dfrac{1}{{\left( {n - 1} \right)!}} + 6.\sum {\dfrac{1}{{n!}}} } }
Now, simplifying the summation, we get,
S=2(e)+3e+6(e1)\Rightarrow S = 2\left( {e} \right)+ 3e + 6\left( {e - 1} \right)
S=11e6\Rightarrow S = 11e -6
Therefore, the correct option of the series is 11e611e - 6, correct option is 2.

Note: The sum of series has many aspects like whether the sum will converge to a finite value or not, what is the limit point of the series. Sometimes, a sum tends to appear to a number, but it will never be able to reach the number, such a series is said to be an infinite GP series, in which the GP tends to reach a particular number, but it will never reach the number.