Solveeit Logo

Question

Question: Solve the inverse trigonometric function for \(x\) , \(2{{\tan }^{-1}}\left( \cos x \right)={{\tan }...

Solve the inverse trigonometric function for xx , 2tan1(cosx)=tan1(2cscx)2{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( 2\csc x \right) .

Explanation

Solution

Hint: For solving this question first we will apply tan\tan function on both sides of the given equation. After that, we will use the formulas like tan(tan1x)=x\tan \left( {{\tan }^{-1}}x \right)=x , tan2θ=2tanθ1tan2θ\tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta } and 1cos2θ=sin2θ1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta to solve further. Then, we will use the result of the equation cotx=coty\cot x=\cot y for writing the final answer for this question.

Complete step-by-step solution -
Given:
We have to find the suitable values of xx and we have the following equation:
2tan1(cosx)=tan1(2cscx)2{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( 2\csc x \right)
Now, let tan1(cosx)=α{{\tan }^{-1}}\left( \cos x \right)=\alpha and tan1(2cscx)=β{{\tan }^{-1}}\left( 2\csc x \right)=\beta . And as we know that, tan(tan1x)=x\tan \left( {{\tan }^{-1}}x \right)=x where xRx\in R . Moreover, for any real xx cosxR\cos x\in R and cscxR\csc x\in R. Then,
α=tan1(cosx) tanα=tan(tan1(cosx)) tanα=cosx............................(1) β=tan1(2cscx) tanβ=tan(tan1(2cscx)) tanβ=2cscx.........................(2) \begin{aligned} & \alpha ={{\tan }^{-1}}\left( \cos x \right) \\\ & \Rightarrow \tan \alpha =\tan \left( {{\tan }^{-1}}\left( \cos x \right) \right) \\\ & \Rightarrow \tan \alpha =\cos x............................\left( 1 \right) \\\ & \beta ={{\tan }^{-1}}\left( 2\csc x \right) \\\ & \Rightarrow \tan \beta =\tan \left( {{\tan }^{-1}}\left( 2\csc x \right) \right) \\\ & \Rightarrow \tan \beta =2\csc x.........................\left( 2 \right) \\\ \end{aligned}
Now, before we proceed we should know the following formulas:
tan2θ=2tanθ1tan2θ......................(3) 1cos2θ=sin2θ........................(4) cscθ=1sinθ...............................(5) cosθsinθ=cotθ...............................(6) cotπ4=1.....................................(7) \begin{aligned} & \tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }......................\left( 3 \right) \\\ & 1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta ........................\left( 4 \right) \\\ & \csc \theta =\dfrac{1}{\sin \theta }...............................\left( 5 \right) \\\ & \dfrac{\cos \theta }{\sin \theta }=\cot \theta ...............................\left( 6 \right) \\\ & \cot \dfrac{\pi }{4}=1.....................................\left( 7 \right) \\\ \end{aligned}
Now, we have an equation 2tan1(cosx)=tan1(2cscx)2{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( 2\csc x \right) and as per our assumption, tan1(cosx)=α{{\tan }^{-1}}\left( \cos x \right)=\alpha and tan1(2cscx)=β{{\tan }^{-1}}\left( 2\csc x \right)=\beta . Then,
2tan1(cosx)=tan1(2cscx) 2α=β \begin{aligned} & 2{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( 2\csc x \right) \\\ & \Rightarrow 2\alpha =\beta \\\ \end{aligned}
Now, we apply tan\tan function on both sides in the above equation. Then,
2α=β tan(2α)=tanβ \begin{aligned} & 2\alpha =\beta \\\ & \Rightarrow \tan \left( 2\alpha \right)=\tan \beta \\\ \end{aligned}
Now, we will use the formula from the equation (3) to write tan2α=2tanα1tan2α\tan 2\alpha =\dfrac{2\tan \alpha }{1-{{\tan }^{2}}\alpha } in the above equation. Then,
tan(2α)=tanβ 2tanα1tan2α=tanβ \begin{aligned} & \tan \left( 2\alpha \right)=\tan \beta \\\ & \Rightarrow \dfrac{2\tan \alpha }{1-{{\tan }^{2}}\alpha }=\tan \beta \\\ \end{aligned}
Now, we can write tanα=cosx\tan \alpha =\cos x from equation (1) and tanβ=2cscx\tan \beta =2\csc x from equation (2) in the above equation. Then,
2tanα1tan2α=tanβ 2cosx1cos2x=2cscx \begin{aligned} & \dfrac{2\tan \alpha }{1-{{\tan }^{2}}\alpha }=\tan \beta \\\ & \Rightarrow \dfrac{2\cos x}{1-{{\cos }^{2}}x}=2\csc x \\\ \end{aligned}
Now, we will use the formula from the equation (4) to write 1cos2x=sin2x1-{{\cos }^{2}}x={{\sin }^{2}}x and formula from the equation (5) to write cscx=1sinx\csc x=\dfrac{1}{\sin x} in the above equation. Then,
2cosx1cos2x=2cscx cosxsin2x=1sinx cosxsin2x1sinx=0 1sinx(cosxsinx1)=0 \begin{aligned} & \dfrac{2\cos x}{1-{{\cos }^{2}}x}=2\csc x \\\ & \Rightarrow \dfrac{\cos x}{{{\sin }^{2}}x}=\dfrac{1}{\sin x} \\\ & \Rightarrow \dfrac{\cos x}{{{\sin }^{2}}x}-\dfrac{1}{\sin x}=0 \\\ & \Rightarrow \dfrac{1}{\sin x}\left( \dfrac{\cos x}{\sin x}-1 \right)=0 \\\ \end{aligned}
Now, we will use the formula from the equation (6) to write cosxsinx=cotx\dfrac{\cos x}{\sin x}=\cot x and formula from the equation (7) to write 1=cotπ41=\cot \dfrac{\pi }{4} in the above equation. Then,
1sinx(cosxsinx1)=0 1sinx(cotxcotπ4)=0 \begin{aligned} & \dfrac{1}{\sin x}\left( \dfrac{\cos x}{\sin x}-1 \right)=0 \\\ & \Rightarrow \dfrac{1}{\sin x}\left( \cot x-\cot \dfrac{\pi }{4} \right)=0 \\\ \end{aligned}
Now, from the above result, we conclude that cotx=cotπ4\cot x=\cot \dfrac{\pi }{4} and sinx0\sin x\ne 0 . Then,
cotx=cotπ4.............(8)\cot x=\cot \dfrac{\pi }{4}.............\left( 8 \right)
Now, before we proceed we should know one important result which we will use here.
If cotx=coty\cot x=\cot y , then the general solution for xx in terms of y can be written as,
x=nπ+y............(9)x=n\pi +y............\left( 9 \right) , where nn is any integer.
From (8) we have:
cotx=cotπ4 x=nπ+π4 \begin{aligned} & \cot x=\cot \dfrac{\pi }{4} \\\ & \Rightarrow x=n\pi +\dfrac{\pi }{4} \\\ \end{aligned}
Now, from the above result we conclude that suitable values of xx will be x=nπ+π4x=n\pi +\dfrac{\pi }{4} , where nn is any integer and values of xx will be π4,5π4,9π4.............nπ+π4\dfrac{\pi }{4},\dfrac{5\pi }{4},\dfrac{9\pi }{4}.............n\pi +\dfrac{\pi }{4} .
Thus, if 2tan1(cosx)=tan1(2cscx)2{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( 2\csc x \right) then, suitable values of xx will be π4,5π4,9π4.............nπ+π4\dfrac{\pi }{4},\dfrac{5\pi }{4},\dfrac{9\pi }{4}.............n\pi +\dfrac{\pi }{4} , where nn is any integer.

Note: Here, the student should first understand what is asked in the question and then proceed in the right direction to get the correct answer quickly. Moreover, we should correctly apply every formula without any mathematical error while solving and in the end, when we got equation cotx=cotπ4\cot x=\cot \dfrac{\pi }{4} then, avoid writing x=π4x=\dfrac{\pi }{4} directly and solve correctly.