Solveeit Logo

Question

Question: Solve the inverse trigonometric equation for x, \(2{{\tan }^{-1}}\left( \sin x \right)={{\tan }^{-1}...

Solve the inverse trigonometric equation for x, 2tan1(sinx)=tan1(2secx),xπ22{{\tan }^{-1}}\left( \sin x \right)={{\tan }^{-1}}\left( 2\sec x \right),x\ne \dfrac{\pi }{2}.

Explanation

Solution

Hint: Use the identity given by: 2tan1x=tan1(2x1x2)2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right) to simplify the term in L.H.S. Once the coefficient of tan inverse becomes the same on both the sides, remove the tan inverse function from both the sides and equate their arguments. Solve the obtained trigonometric equation and find the general solution of the equation. Use the formula for the general solution: if tana=tanb\tan a=\tan b, then a=nπ+ba=n\pi +b, where ‘n’ is any integer.

Complete step-by-step solution -
We have been provided with the equation: 2tan1(sinx)=tan1(2secx),xπ22{{\tan }^{-1}}\left( \sin x \right)={{\tan }^{-1}}\left( 2\sec x \right),x\ne \dfrac{\pi }{2}.
Here, we have been given the condition: xπ2x\ne \dfrac{\pi }{2}, because tangent function and secant function is undefined at x=π2x=\dfrac{\pi }{2}. So, the solution cannot be x=π2x=\dfrac{\pi }{2}.
Now let us come to the question.
2tan1(sinx)=tan1(2secx)2{{\tan }^{-1}}\left( \sin x \right)={{\tan }^{-1}}\left( 2\sec x \right)
Applying the formula: 2tan1x=tan1(2x1x2)2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right), we have,
tan1(2sinx1sin2x)=tan1(2secx){{\tan }^{-1}}\left( \dfrac{2\sin x}{1-{{\sin }^{2}}x} \right)={{\tan }^{-1}}\left( 2\sec x \right)
Using the identity: 1sin2θ=cos2θ1-{{\sin }^{2}}\theta ={{\cos }^{2}}\theta , we get,
tan1(2sinxcos2x)=tan1(2secx){{\tan }^{-1}}\left( \dfrac{2\sin x}{{{\cos }^{2}}x} \right)={{\tan }^{-1}}\left( 2\sec x \right)
Now, removing tan inverse function from both sides, we get,
(2sinxcos2x)=(2secx)\left( \dfrac{2\sin x}{{{\cos }^{2}}x} \right)=\left( 2\sec x \right)
We know that, secx=1cosx\sec x=\dfrac{1}{\cos x}, therefore, the expression becomes:
(2sinxcos2x)=(2cosx)\left( \dfrac{2\sin x}{{{\cos }^{2}}x} \right)=\left( \dfrac{2}{\cos x} \right)
Cancelling the common terms, we get,
sinxcosx=1 tanx=1 tanx=tanπ4 \begin{aligned} & \dfrac{\sin x}{\cos x}=1 \\\ & \Rightarrow \tan x=1 \\\ & \Rightarrow \tan x=\tan \dfrac{\pi }{4} \\\ \end{aligned}
Using the formula for general solution given by: if tana=tanb\tan a=\tan b, then a=nπ+ba=n\pi +b, we get,
x=nπ+π4x=n\pi +\dfrac{\pi }{4}, where ‘n’ is any integer.

Note: One may note that, we cannot directly remove tan inverse function from both sides at the very beginning because the coefficient of this inverse function is not equal on both sides. Therefore, first we made the coefficients of the given tan inverse function equal on both sides and then removed it from both the sides. You may note that we have found the general solution of the given equation because there are no limits provided to us to find any particular solution or principal solution. You may find any particular solution by substituting the integral values of ‘n’.