Solveeit Logo

Question

Question: solve the integration of root (tanx)...

solve the integration of root (tanx)

Answer

12arctan(tanx12tanx)+122lntanx2tanx+1tanx+2tanx+1+C\frac{1}{\sqrt{2}} \arctan\left(\frac{\tan x-1}{\sqrt{2\tan x}}\right) + \frac{1}{2\sqrt{2}} \ln\left|\frac{\tan x-\sqrt{2\tan x}+1}{\tan x+\sqrt{2\tan x}+1}\right| + C

Explanation

Solution

To solve the integral tanxdx\int \sqrt{\tan x} \, dx, we use a specific substitution and algebraic manipulation.

1. Substitution: Let I=tanxdxI = \int \sqrt{\tan x} \, dx. Let t2=tanxt^2 = \tan x. Differentiating both sides with respect to xx: 2tdtdx=sec2x2t \frac{dt}{dx} = \sec^2 x. We know that sec2x=1+tan2x\sec^2 x = 1 + \tan^2 x. Substituting t2=tanxt^2 = \tan x, we get sec2x=1+(t2)2=1+t4\sec^2 x = 1 + (t^2)^2 = 1 + t^4. So, 2tdtdx=1+t42t \frac{dt}{dx} = 1 + t^4, which implies dx=2t1+t4dtdx = \frac{2t}{1+t^4} \, dt.

Substitute t2=tanxt^2 = \tan x and dx=2t1+t4dtdx = \frac{2t}{1+t^4} \, dt into the integral: I=t2t1+t4dt=2t21+t4dtI = \int t \cdot \frac{2t}{1+t^4} \, dt = \int \frac{2t^2}{1+t^4} \, dt.

2. Decompose the Integrand: We can split the integrand 2t2t4+1\frac{2t^2}{t^4+1} into two parts: 2t2t4+1=t2+1+t21t4+1=t2+1t4+1+t21t4+1\frac{2t^2}{t^4+1} = \frac{t^2+1 + t^2-1}{t^4+1} = \frac{t^2+1}{t^4+1} + \frac{t^2-1}{t^4+1}. So, the integral becomes: I=t2+1t4+1dt+t21t4+1dtI = \int \frac{t^2+1}{t^4+1} \, dt + \int \frac{t^2-1}{t^4+1} \, dt.

3. Evaluate the First Integral: Let I1=t2+1t4+1dtI_1 = \int \frac{t^2+1}{t^4+1} \, dt. Divide the numerator and denominator by t2t^2: I1=1+1/t2t2+1/t2dtI_1 = \int \frac{1 + 1/t^2}{t^2 + 1/t^2} \, dt. Let u=t1/tu = t - 1/t. Then du=(1+1/t2)dtdu = (1 + 1/t^2) \, dt. Also, u2=(t1/t)2=t2+1/t22u^2 = (t - 1/t)^2 = t^2 + 1/t^2 - 2, so t2+1/t2=u2+2t^2 + 1/t^2 = u^2 + 2. Substitute these into I1I_1: I1=duu2+2=duu2+(2)2I_1 = \int \frac{du}{u^2+2} = \int \frac{du}{u^2+(\sqrt{2})^2}. This is a standard integral of the form dxx2+a2=1aarctan(xa)\int \frac{dx}{x^2+a^2} = \frac{1}{a} \arctan\left(\frac{x}{a}\right). I1=12arctan(u2)+C1I_1 = \frac{1}{\sqrt{2}} \arctan\left(\frac{u}{\sqrt{2}}\right) + C_1. Substitute back u=t1/t=t21tu = t - 1/t = \frac{t^2-1}{t}: I1=12arctan(t212t)+C1I_1 = \frac{1}{\sqrt{2}} \arctan\left(\frac{t^2-1}{\sqrt{2}t}\right) + C_1.

4. Evaluate the Second Integral: Let I2=t21t4+1dtI_2 = \int \frac{t^2-1}{t^4+1} \, dt. Divide the numerator and denominator by t2t^2: I2=11/t2t2+1/t2dtI_2 = \int \frac{1 - 1/t^2}{t^2 + 1/t^2} \, dt. Let v=t+1/tv = t + 1/t. Then dv=(11/t2)dtdv = (1 - 1/t^2) \, dt. Also, v2=(t+1/t)2=t2+1/t2+2v^2 = (t + 1/t)^2 = t^2 + 1/t^2 + 2, so t2+1/t2=v22t^2 + 1/t^2 = v^2 - 2. Substitute these into I2I_2: I2=dvv22=dvv2(2)2I_2 = \int \frac{dv}{v^2-2} = \int \frac{dv}{v^2-(\sqrt{2})^2}. This is a standard integral of the form dxx2a2=12alnxax+a\int \frac{dx}{x^2-a^2} = \frac{1}{2a} \ln\left|\frac{x-a}{x+a}\right|. I2=122lnv2v+2+C2I_2 = \frac{1}{2\sqrt{2}} \ln\left|\frac{v-\sqrt{2}}{v+\sqrt{2}}\right| + C_2. Substitute back v=t+1/t=t2+1tv = t + 1/t = \frac{t^2+1}{t}: I2=122lnt2+1t2t2+1t+2+C2=122lnt22t+1t2+2t+1+C2I_2 = \frac{1}{2\sqrt{2}} \ln\left|\frac{\frac{t^2+1}{t}-\sqrt{2}}{\frac{t^2+1}{t}+\sqrt{2}}\right| + C_2 = \frac{1}{2\sqrt{2}} \ln\left|\frac{t^2-\sqrt{2}t+1}{t^2+\sqrt{2}t+1}\right| + C_2.

5. Combine and Substitute Back: Combine I1I_1 and I2I_2: I=I1+I2=12arctan(t212t)+122lnt22t+1t2+2t+1+CI = I_1 + I_2 = \frac{1}{\sqrt{2}} \arctan\left(\frac{t^2-1}{\sqrt{2}t}\right) + \frac{1}{2\sqrt{2}} \ln\left|\frac{t^2-\sqrt{2}t+1}{t^2+\sqrt{2}t+1}\right| + C. Finally, substitute back t2=tanxt^2 = \tan x and t=tanxt = \sqrt{\tan x}: I=12arctan(tanx12tanx)+122lntanx2tanx+1tanx+2tanx+1+CI = \frac{1}{\sqrt{2}} \arctan\left(\frac{\tan x-1}{\sqrt{2}\sqrt{\tan x}}\right) + \frac{1}{2\sqrt{2}} \ln\left|\frac{\tan x-\sqrt{2}\sqrt{\tan x}+1}{\tan x+\sqrt{2}\sqrt{\tan x}+1}\right| + C.

The final answer is 12arctan(tanx12tanx)+122lntanx2tanx+1tanx+2tanx+1+C\boxed{\frac{1}{\sqrt{2}} \arctan\left(\frac{\tan x-1}{\sqrt{2\tan x}}\right) + \frac{1}{2\sqrt{2}} \ln\left|\frac{\tan x-\sqrt{2\tan x}+1}{\tan x+\sqrt{2\tan x}+1}\right| + C}.

Explanation of the solution:

  1. Substitute t2=tanxt^2 = \tan x to transform the integral into a rational function of tt: 2t21+t4dt\int \frac{2t^2}{1+t^4} \, dt.
  2. Decompose the integrand 2t21+t4\frac{2t^2}{1+t^4} into t2+1t4+1+t21t4+1\frac{t^2+1}{t^4+1} + \frac{t^2-1}{t^4+1}.
  3. For t2+1t4+1dt\int \frac{t^2+1}{t^4+1} \, dt, divide numerator and denominator by t2t^2 and substitute u=t1/tu=t-1/t. This leads to an arctan\arctan function.
  4. For t21t4+1dt\int \frac{t^2-1}{t^4+1} \, dt, divide numerator and denominator by t2t^2 and substitute v=t+1/tv=t+1/t. This leads to a ln\ln function.
  5. Combine the results and substitute back t=tanxt = \sqrt{\tan x}.

Answer: The integral of tanx\sqrt{\tan x} is 12arctan(tanx12tanx)+122lntanx2tanx+1tanx+2tanx+1+C\frac{1}{\sqrt{2}} \arctan\left(\frac{\tan x-1}{\sqrt{2\tan x}}\right) + \frac{1}{2\sqrt{2}} \ln\left|\frac{\tan x-\sqrt{2\tan x}+1}{\tan x+\sqrt{2\tan x}+1}\right| + C.