Question
Question: Solve the integration \[\int{\cos x\log \left( \cos x \right)dx}=\sin x\log \left( \cos x \right)+\l...
Solve the integration ∫cosxlog(cosx)dx=sinxlog(cosx)+log∣secx+tanx∣+f(x)+c
, then f(x)=?
(a) −sinx
(b) cosx
(c) tanx
(d) cotx
Solution
Apply integration by parts using the ILATE rule by assuming log(cosx) as the first function and cosx as the second function. Simplify the obtained integral and apply integration by parts one more time by assuming tanx as the first function and sinx as the second function. Use the conversion, sinx to simplify the expression obtained. Compare the obtained L.H.S with the given R.H.S and find the value of f(x).
Complete step-by-step solution
Here, we have provided with the expression: -
⇒∫cosxlog(cosx)dx=sinxlog(cosx)+log∣secx+tanx∣+f(x)+c and we have to find the value of f(x).
Now, here we can see that we have a product of two functions inside the integral sign, i. e, cosx and log(cosx). So, here we must apply the integration by parts method to find the integral. Here, we assume the given functions as function f1(x) and function f2(x) according to ILATE rule. ILATE stands for: -
I → Inverse trigonometric functions
L → Logarithmic functions
A → Algebraic functions
T → Trigonometric functions
E → Exponential functions
In the ILATE rule we assume f1(x) as the function which comes first according to the above given list. For example: - in the above question we have a trigonometric function cosx and a logarithmic function log(cosx). So, we will assume f1(x)=log(cosx) and f2(x)=cosx. Now, the formula for the integral is given as: - ∫f1(x).f2(x)=f1(x).∫f2(x)dx−∫(∫f2(x)dx).f1′(x)dx.
Here, f1′(x)=dxd[f1(x)].
Now, using the ILATE rule we have,
⇒ L.H.S = ∫cosxlog(cosx)dx
⇒ L.H.S = \log \left( \cos x \right)\int{\cos xdx}-\int{\left\\{ \left( \int{\cos xdx} \right).\dfrac{d\left[ \log \left( \cos x \right) \right]}{dx} \right\\}dx}
⇒ L.H.S = log(cosx).sinx−∫sinx×cosx1×(−sinx)dx
⇒ L.H.S = sinxlog(cosx)+∫(cosxsinx)×sinxdx
Using the conversion, cosxsinx=tanx, we get,
⇒ L.H.S = sinxlog(cosx)+∫tanx×sinxdx
Now, in the above relation we have a product of tanx and sinx and both of them are trigonometric functions. Here, we know the integration of sinx can be found easily, so assuming f1(x)=tanx and f2(x)=sinx, we get,
⇒ L.H.S = \sin x\log \left( \cos x \right)+\tan x\int{\sin xdx}-\int{\left\\{ \left( \int{\sin xdx} \right).\dfrac{d\left[ \tan x \right]}{dx} \right\\}dx}
⇒ L.H.S = sinxlog(cosx)+tanx.(−cosx)−∫(−cosx).sec2xdx
⇒ L.H.S = sinxlog(cosx)−cosx.tanx+∫(cosx.secx).secxdx
Using the identity, tanx=cosxsinx and secx.cosx=1, we get,
⇒ L.H.S = sinxlog(cosx)−cosx.cosxsinx+∫1.secxdx
⇒ L.H.S = sinxlog(cosx)−sinx+∫secxdx
We know that ∫secxdx=log∣secx+tanx∣+c, where ‘c’ is the constant of integration.
Now, comparing the obtained L.H.S with the given R.H.S we can clearly conclude that, f(x)=−sinx.
Hence, option (a) is the correct answer.
Note: One may note that in the product of tanx and sinx it was confusing to choose the first function because both were trigonometric functions and the ILATE rule could not be applied. Here, we saw that we can easily find the integration of sinx and that is why it was assumed to be the second function. You must remember the ILATE rule and basic integration and differentiation formulas to solve the question.
.