Solveeit Logo

Question

Question: Solve the initial value problem: \(dy={{e}^{2x+y}}dx,y\left( 0 \right)=0\)...

Solve the initial value problem:
dy=e2x+ydx,y(0)=0dy={{e}^{2x+y}}dx,y\left( 0 \right)=0

Explanation

Solution

Hint: Here, we will first take the function involving x on one side and the function involving y to the other side. After obtaining the solution, we can find the value of the constant of integration using the given condition.

Complete step-by-step answer:
We know that an initial value problem is an ordinary differential equation together with an initial condition which specifies the value of the unknown function at a given point in the domain.
Here, the differential equation given to us is:
dy=e2x+ydxdy={{e}^{2x+y}}dx
We can also write this equation as:
dydx=e2x.ey\dfrac{dy}{dx}={{e}^{2x}}.{{e}^{y}}
Now, to make the similar terms on same side, we can also write this as:
dyey=e2x.dx\dfrac{dy}{{{e}^{y}}}={{e}^{2x}}.dx
On integrating both sides, we get:
eydy=e2xdx..........(1)\int_{{}}^{{}}{{{e}^{-y}}dy=\int_{{}}^{{}}{{{e}^{2x}}dx..........\left( 1 \right)}}
Since, we know that the integration of ex{{e}^{x}} is given as exdx=ex+c\int_{{}}^{{}}{{{e}^{x}}dx={{e}^{x}}+c}
Now, let us consider that t=yt=-y.
On differentiating w.r.t y, we get:
dy=dtdy=-dt
So,
eydy=et.(dt)=etdt=et+c=ey+c1\int_{{}}^{{}}{{{e}^{-y}}dy=\int_{{}}^{{}}{{{e}^{t}}.\left( -dt \right)=-\int_{{}}^{{}}{{{e}^{t}}dt}=-{{e}^{t}}+c=-{{e}^{-y}}+{{c}_{1}}}}
Similarly let us consider that k=2xk=2x .
On differentiating w.r.t. x, we get:
2=dkdx 2dx=dk \begin{aligned} & \Rightarrow 2=\dfrac{dk}{dx} \\\ & \Rightarrow 2dx=dk \\\ \end{aligned}
So,
e2xdx=ek.dk2=12ekdk=12ek+c2=12e2x+c2\int_{{}}^{{}}{{{e}^{2x}}dx=\int_{{}}^{{}}{{{e}^{k}}.\dfrac{dk}{2}=\dfrac{1}{2}\int_{{}}^{{}}{{{e}^{k}}dk=\dfrac{1}{2}{{e}^{k}}+{{c}_{2}}=\dfrac{1}{2}{{e}^{2x}}+{{c}_{2}}}}}
On putting the corresponding values in equation (1), we get:
ey+c1=e2x2+c2 e2x2+ey=c1c2=c...........(2) \begin{aligned} & -{{e}^{-y}}+{{c}_{1}}=\dfrac{{{e}^{2x}}}{2}+{{c}_{2}} \\\ & \Rightarrow \dfrac{{{e}^{2x}}}{2}+{{e}^{-y}}={{c}_{1}}-{{c}_{2}}=c...........\left( 2 \right) \\\ \end{aligned}
Here, c is only another integration constant and it is equal to c1c2{{c}_{1}}-{{c}_{2}}.
Since, it is given that y(0)=0y\left( 0 \right)=0.
So, on substituting x = 0 and y = 0 in equation (2), we get:
e02+e0=c c=12+1=32 \begin{aligned} & \dfrac{{{e}^{0}}}{2}+{{e}^{0}}=c \\\ & \Rightarrow c=\dfrac{1}{2}+1=\dfrac{3}{2} \\\ \end{aligned}
Hence, the solution of the given differential equation is e2x2+ey=32\dfrac{{{e}^{2x}}}{2}+{{e}^{-y}}=\dfrac{3}{2}.

Note: Students should note here that we have written c1c2{{c}_{1}}-{{c}_{2}} as another constant C because the difference of two constants will also give us a constant. Students should remember the formulas of integration.