Solveeit Logo

Question

Question: Solve the given trigonometric expression \(\tan 3\theta = \cot \theta \)...

Solve the given trigonometric expression
tan3θ=cotθ\tan 3\theta = \cot \theta

Explanation

Solution

Hint- In this question convert tanθ\tan \theta in terms of sinθ and cosθ\sin \theta {\text{ and cos}}\theta and similarly cotθ\cot \theta in terms of sinθ and cosθ\sin \theta {\text{ and cos}}\theta using the concept that tan is the ratio of sine to cosine and cot is the ratio of cosine to sine. Use the general formula for roots when cosθ=0\cos \theta = 0, this will help getting the right answer.

Complete step-by-step solution -

Given trigonometric equation
tan3θ=cotθ\tan 3\theta = \cot \theta
As we know tan is the ratio of sine to cosine and cot is the ratio of cosine to sine so use this property we have,
sin3θcos3θ=cotθsinθ\Rightarrow \dfrac{{\sin 3\theta }}{{\cos 3\theta }} = \dfrac{{\cot \theta }}{{\sin \theta }}
Now simplify this we have,
sin3θsinθ=cos3θcosθ\Rightarrow \sin 3\theta \sin \theta = \cos 3\theta \cos \theta
cos3θcosθsin3θsinθ=0\Rightarrow \cos 3\theta \cos \theta - \sin 3\theta \sin \theta = 0
Now as we know that cos(A+B)=cosAcosBsinAsinB\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B so use this property we have,
cos(3θ+θ)=0\Rightarrow \cos \left( {3\theta + \theta } \right) = 0
cos4θ=0\Rightarrow \cos 4\theta = 0
Now as we know that 0=cos[(2n+1)π2]0 = \cos \left[ {\left( {2n + 1} \right)\dfrac{\pi }{2}} \right], where n = 0, 1, 2...
cos4θ=0=cos[(2n+1)π2]\Rightarrow \cos 4\theta = 0 = \cos \left[ {\left( {2n + 1} \right)\dfrac{\pi }{2}} \right]
Now on comparing we have,
4θ=(2n+1)π2\Rightarrow 4\theta = \left( {2n + 1} \right)\dfrac{\pi }{2}
Now divide by 4 throughout we have,
θ=(2n+1)π8\Rightarrow \theta = \left( {2n + 1} \right)\dfrac{\pi }{8}, n0,1,2........n \in 0,1,2........
So this is the required solution of the given expression.

Note – The verification of cos4θ=0=cos[(2n+1)π2]\cos 4\theta = 0 = \cos \left[ {\left( {2n + 1} \right)\dfrac{\pi }{2}} \right] can be provided by the fact that n in this case varies form n = 0, 1, 2... that is set of whole numbers. So if n=0, then we will have cosπ2\cos \dfrac{\pi }{2}which eventually will be zero. Now if we substitute 1 in place of n we get cos3π2\cos \dfrac{{3\pi }}{2}which is again zero. Thus cos[(2n+1)π2]\cos \left[ {\left( {2n + 1} \right)\dfrac{\pi }{2}} \right] is the general value for any cosθ=0\cos \theta = 0.