Solveeit Logo

Question

Question: Solve the given trigonometric expression: \(\sin {36^\circ} \times \sin {72^\circ} \times \sin {108^...

Solve the given trigonometric expression: sin36×sin72×sin108×sin144=?\sin {36^\circ} \times \sin {72^\circ} \times \sin {108^\circ} \times \sin {144^\circ} = ?
A) 316\dfrac{3}{{16}}
B) 14\dfrac{1}{4}
C) 516\dfrac{5}{{16}}
D) 12\dfrac{1}{2}

Explanation

Solution

According to given in the question we have to solve the given expression sin36×sin72×sin108×sin144\sin {36^\circ} \times \sin {72^\circ} \times \sin {108^\circ} \times \sin {144^\circ} so, first of all we have to convert the trigonometric term sin108\sin {108^\circ} into sin36\sin {36^\circ} and same as we have to convert the trigonometric term sin144\sin {144^\circ} into sin72\sin {72^\circ}

Formula used: sin(180θ)=sinθ.................(1)\sin ({180^\circ} - \theta ) = \sin \theta .................(1)
So that we can solve the given trigonometric expression easily and after that to obtain the value of
(sin36)2{(\sin {36^\circ})^2} and (sin72)2{(\sin {72^\circ})^2}
Hence, to find the value of (sin36)2{(\sin {36^\circ})^2} we have to follow the process given below:
First of all we have to the formula cos2θ=12sin2θ.............(2)\cos 2\theta = 1 - 2{\sin ^2}\theta .............(2) and we know that the value if sin18=(514)\sin {18^\circ} = \left( {\dfrac{{\sqrt 5 - 1}}{4}} \right) so, with the help of formula (2) and value of sin18\sin {18^\circ}we can obtain the value of (sin36)2{(\sin {36^\circ})^2}
Now, same as we have to find the value of (sin36)2{(\sin {36^\circ})^2} and to find the value first of all we have to find the value of cos18\cos {18^\circ} with the help of the value of sin18\sin {18^\circ}.
Hence, after substituting the values in the obtained trigonometric expression we can simplify it.
sin(90θ)=cosθ.............(a)\sin ({90^\circ} - \theta ) = \cos \theta .............(a)

Complete step-by-step answer:
Step 1: First of all we have to convert the trigonometric term sin108\sin {108^\circ} into sin36\sin {36^\circ} and same as we have to convert the trigonometric term sin144\sin {144^\circ} into sin72\sin {72^\circ} with the help of the formula (1) mentioned in the solution hint.
=sin36×sin72×sin(18036)×sin(18072)= \sin {36^\circ} \times \sin {72^\circ} \times \sin ({180^\circ} - {36^\circ}) \times \sin ({180^\circ} - {72^\circ})
=sin36×sin72×sin36×sin72 =(sin36)2×(sin72)2.............(3) = \sin {36^\circ} \times \sin {72^\circ} \times \sin {36^\circ} \times \sin {72^\circ} \\\ = {(\sin {36^\circ})^2} \times {(\sin {72^\circ})^2}.............(3)
Step 2: Now, to solve the expression (3) obtained just above first of all we have to find the value of sin36\sin {36^\circ} and to find the value of sin36\sin {36^\circ} we have to use the value of sin18\sin {18^\circ} and the formula (2) as mentioned in the solution hint.

cos36=12sin218 cos36=12(514)2 cos36=1(5+1254) cos36=1(6258) cos36=86+258 cos36=2+258 \Rightarrow \cos {36^\circ} = 1 - 2{\sin ^2}{18^\circ} \\\ \Rightarrow \cos {36^\circ} = 1 - 2{\left( {\dfrac{{\sqrt 5 - 1}}{4}} \right)^2} \\\ \Rightarrow \cos {36^\circ} = 1 - \left( {\dfrac{{5 + 1 - 2\sqrt 5 }}{4}} \right) \\\ \Rightarrow \cos {36^\circ} = 1 - \left( {\dfrac{{6 - 2\sqrt 5 }}{8}} \right) \\\ \Rightarrow \cos {36^\circ} = \dfrac{{8 - 6 + 2\sqrt 5 }}{8} \\\ \Rightarrow \cos {36^\circ} = \dfrac{{2 + 2\sqrt 5 }}{8}

Now, we have to take 2 as a common term from the numerator and divide it with 8 in the denominator.
cos36=5+18\Rightarrow \cos {36^\circ} = \dfrac{{\sqrt 5 + 1}}{8}
Step 3: Now, we have to find the value of (sin36)2{(\sin {36^\circ})^2} with the help of the value of cos36\cos {36^\circ} as obtained in the step 2:
sin236+cos236=1 sin236=1cos236 \Rightarrow {\sin ^2}{36^\circ} + {\cos ^2}{36^\circ} = 1 \\\ \Rightarrow {\sin ^2}{36^\circ} = 1 - {\cos ^2}{36^\circ}
On substituting the value of cos36\cos {36^\circ} in the expression obtained just above,
sin236=1(5+14)2 sin236=1(5+1+2516) sin236=1662516 sin236=102516 \Rightarrow {\sin ^2}{36^\circ} = 1 - {\left( {\dfrac{{\sqrt 5 + 1}}{4}} \right)^2} \\\ \Rightarrow {\sin ^2}{36^\circ} = 1 - \left( {\dfrac{{5 + 1 + 2\sqrt 5 }}{{16}}} \right) \\\ \Rightarrow {\sin ^2}{36^\circ} = \dfrac{{16 - 6 - 2\sqrt 5 }}{{16}} \\\ \Rightarrow {\sin ^2}{36^\circ} = \dfrac{{10 - 2\sqrt 5 }}{{16}}
Step 4: Now, we have to find the value of sin72\sin {72^\circ} and to find the value of sin72\sin {72^\circ} we have to use the value of sin18\sin {18^\circ} as mentioned in the solution hint.

sin218+cos218=1 cos218=1sin218 \Rightarrow {\sin ^2}{18^\circ} + {\cos ^2}{18^\circ} = 1 \\\ \Rightarrow {\cos ^2}{18^\circ} = 1 - {\sin ^2}{18^\circ}

On substituting the value of sin18\sin {18^\circ} in the expression obtained just above,
cos18=1(154)2 cos18=1(1+52516) cos18=166+2516 cos18=10+254 \Rightarrow \cos {18^\circ} = \sqrt {1 - {{\left( {\dfrac{{1 - \sqrt 5 }}{4}} \right)}^2}} \\\ \Rightarrow \cos {18^\circ} = \sqrt {1 - \left( {\dfrac{{1 + 5 - 2\sqrt 5 }}{{16}}} \right)} \\\ \Rightarrow \cos {18^\circ} = \sqrt {\dfrac{{16 - 6 + 2\sqrt 5 }}{{16}}} \\\ \Rightarrow \cos {18^\circ} = \sqrt {\dfrac{{10 + 2\sqrt 5 }}{4}}
Now, to find the value of sin72\sin {72^\circ} we have to use the formula (a) as mentioned in the solution hint.
sin72=sin(9018) sin72=cos18 sin72=10+254 \Rightarrow \sin {72^\circ} = \sin ({90^\circ} - {18^\circ}) \\\ \Rightarrow \sin {72^\circ} = \cos {18^\circ} \\\ \Rightarrow \sin {72^\circ} = \sqrt {\dfrac{{10 + 2\sqrt 5 }}{4}}
Step 5: Now, we have to substitute the values of sin36\sin {36^\circ} and sin72\sin {72^\circ} as obtained from the step 2 and step 4 in the expression (3)
=[102516]2×[10+2516]2= {\left[ {\sqrt {\dfrac{{10 - 2\sqrt 5 }}{{16}}} } \right]^2} \times {\left[ {\sqrt {\dfrac{{10 + 2\sqrt 5 }}{{16}}} } \right]^2}
On solving the obtained expression,
=[1002016×16] =80256 =516 = \left[ {\dfrac{{100 - 20}}{{16 \times 16}}} \right] \\\ = \dfrac{{80}}{{256}} \\\ = \dfrac{5}{{16}}
Final solution: Hence, with the help of the formulas (a), (1) and (2) we have obtained the value of the given trigonometric expression sin36×sin72×sin108×sin144=516\sin {36^\circ} \times \sin {72^\circ} \times \sin {108^\circ} \times \sin {144^\circ} = \dfrac{5}{{16}}

Therefore the option C is the correct answer.

Note: To convert sinθ\sin \theta in the form of cosθ\cos \theta we can use the sin(90θ)=cosθ\sin ({90^\circ} - \theta ) = \cos \theta hence we can obtain the value of cos18\cos {18^\circ} from sin18\sin {18^\circ}
With the help of the identity sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1 to find the value of sin2θ{\sin ^2}\theta or cos2θ{\cos ^2}\theta